Dataset Viewer
Auto-converted to Parquet Duplicate
context_start_lineno
int64
1
913
line_no
int64
16
984
repo
stringclasses
5 values
id
int64
0
416
target_function_prompt
stringlengths
201
13.6k
function_signature
stringlengths
201
13.6k
solution_position
listlengths
2
2
raw_solution
stringlengths
201
13.6k
focal_code
stringlengths
201
13.6k
function_name
stringlengths
2
38
start_line
int64
1
913
end_line
int64
16
984
file_path
stringlengths
10
52
context
stringlengths
4.52k
9.85k
230
241
DataStructures.jl
0
function Base.intersect!(a::Accumulator, b::Accumulator) for k in union(keys(a), keys(b)) # union not intersection as we want to check both multiplicities va = a[k] vb = b[k] va >= 0 || throw(MultiplicityException(k, va)) vb >= 0 || throw(MultiplicityException(k, vb)) a[k] = min(va, vb) drop_nonpositive!(a, k) # Drop any that ended up zero end return a end
function Base.intersect!(a::Accumulator, b::Accumulator) for k in union(keys(a), keys(b)) # union not intersection as we want to check both multiplicities va = a[k] vb = b[k] va >= 0 || throw(MultiplicityException(k, va)) vb >= 0 || throw(MultiplicityException(k, vb)) a[k] = min(va, vb) drop_nonpositive!(a, k) # Drop any that ended up zero end return a end
[ 230, 241 ]
function Base.intersect!(a::Accumulator, b::Accumulator) for k in union(keys(a), keys(b)) # union not intersection as we want to check both multiplicities va = a[k] vb = b[k] va >= 0 || throw(MultiplicityException(k, va)) vb >= 0 || throw(MultiplicityException(k, vb)) a[k] = min(va, vb) drop_nonpositive!(a, k) # Drop any that ended up zero end return a end
function Base.intersect!(a::Accumulator, b::Accumulator) for k in union(keys(a), keys(b)) # union not intersection as we want to check both multiplicities va = a[k] vb = b[k] va >= 0 || throw(MultiplicityException(k, va)) vb >= 0 || throw(MultiplicityException(k, vb)) a[k] = min(va, vb) drop_nonpositive!(a, k) # Drop any that ended up zero end return a end
Base.intersect!
230
241
src/accumulator.jl
#FILE: DataStructures.jl/src/sparse_int_set.jl ##CHUNK 1 #Is there a more performant way to do this? Base.intersect!(s1::SparseIntSet, ns) = copy!(s1, intersect(s1, ns)) Base.setdiff(s::SparseIntSet, ns) = setdiff!(copy(s), ns) function Base.setdiff!(s::SparseIntSet, ns) for n in ns pop!(s, n, nothing) end return s end function Base.:(==)(s1::SparseIntSet, s2::SparseIntSet) length(s1) != length(s2) && return false return all(in(s1), s2) end Base.issubset(a::SparseIntSet, b::SparseIntSet) = isequal(a, intersect(a, b)) Base.:(<)(a::SparseIntSet, b::SparseIntSet) = ( a<=b ) && !isequal(a, b) Base.:(<=)(a::SparseIntSet, b::SparseIntSet) = issubset(a, b) #FILE: DataStructures.jl/test/test_int_set.jl ##CHUNK 1 p′ = complement(p) q′ = complement(q) function collect10(itr) r = eltype(itr)[] for i in itr i > 10 && break push!(r, i) end r end a = Set(p) b = Set(q) a′ = Set(collect10(p′)) b′ = Set(collect10(q′)) for f in (union, intersect, setdiff, symdiff) @test collect(f(p, p)) == sort(collect(f(a, a))) @test collect(f(q, q)) == sort(collect(f(b, b))) @test collect(f(p, q)) == sort(collect(f(a, b))) @test collect(f(q, p)) == sort(collect(f(b, a))) #FILE: DataStructures.jl/test/test_mutable_binheap.jl ##CHUNK 1 update!(h, 2, 20) @test isequal(heap_values(h), [0.5, 10.1, 3.0, 20.0]) end @testset "empty!" begin vs = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7] vs2 = collect(enumerate(vs)) ordering = Base.Order.By(last) for h in (MutableBinaryMinHeap(vs), MutableBinaryMaxHeap(vs), MutableBinaryHeap(ordering, vs2)) @test length(h) == length(vs) @test !isempty(h) ret = empty!(h) @test ret === h @test length(ret) == 0 @test isempty(ret) @test verify_heap(ret) end end #FILE: DataStructures.jl/src/int_set.jl ##CHUNK 1 (l1 == l2 || all(unsafe_getindex(s1.bits, l2+1:l1))) end end const hashis_seed = UInt === UInt64 ? 0x88989f1fc7dea67d : 0xc7dea67d function Base.hash(s::IntSet, h::UInt) # Only hash the bits array up to the last-set bit to prevent extra empty # bits from changing the hash result l = findprev(s.bits, length(s.bits)) return hash(unsafe_getindex(s.bits, 1:l), h) ⊻ hash(s.inverse) ⊻ hashis_seed end Base.issubset(a::IntSet, b::IntSet) = isequal(a, intersect(a,b)) Base.:(<)(a::IntSet, b::IntSet) = (a<=b) && !isequal(a,b) Base.:(<=)(a::IntSet, b::IntSet) = issubset(a, b) #CURRENT FILE: DataStructures.jl/src/accumulator.jl ##CHUNK 1 va >= 0 || throw(MultiplicityException(kb, va)) a[kb] = max(va, vb) end return a end Base.intersect(a::Accumulator, b::Accumulator, c::Accumulator...) = intersect(intersect(a,b), c...) Base.intersect(a::Accumulator, b::Accumulator) = intersect!(copy(a), b) function Base.show(io::IO, acc::Accumulator{T,V}) where {T,V} l = length(acc) if l>0 print(io, "Accumulator(") else print(io,"Accumulator{$T,$V}(") end for (count, (k, v)) in enumerate(acc) print(io, k, " => ", v) if count < l print(io, ", ") ##CHUNK 2 end Base.issubset(a::Accumulator, b::Accumulator) = all(b[k] >= v for (k, v) in a) Base.union(a::Accumulator, b::Accumulator, c::Accumulator...) = union(union(a,b), c...) Base.union(a::Accumulator, b::Accumulator) = union!(copy(a), b) function Base.union!(a::Accumulator, b::Accumulator) for (kb, vb) in b va = a[kb] vb >= 0 || throw(MultiplicityException(kb, vb)) va >= 0 || throw(MultiplicityException(kb, va)) a[kb] = max(va, vb) end return a end Base.intersect(a::Accumulator, b::Accumulator, c::Accumulator...) = intersect(intersect(a,b), c...) Base.intersect(a::Accumulator, b::Accumulator) = intersect!(copy(a), b) function Base.show(io::IO, acc::Accumulator{T,V}) where {T,V} ##CHUNK 3 function Base.setdiff(a::Accumulator, b::Accumulator) ret = copy(a) for (k, v) in b v > 0 || throw(MultiplicityException(k, v)) dec!(ret, k, v) drop_nonpositive!(ret, k) end return ret end Base.issubset(a::Accumulator, b::Accumulator) = all(b[k] >= v for (k, v) in a) Base.union(a::Accumulator, b::Accumulator, c::Accumulator...) = union(union(a,b), c...) Base.union(a::Accumulator, b::Accumulator) = union!(copy(a), b) function Base.union!(a::Accumulator, b::Accumulator) for (kb, vb) in b va = a[kb] vb >= 0 || throw(MultiplicityException(kb, vb)) ##CHUNK 4 k::K v::V end function Base.showerror(io::IO, err::MultiplicityException) print(io, "When using an `Accumulator` as a multiset, all elements must have positive multiplicity") print(io, " element `$(err.k)` has multiplicity $(err.v)") end drop_nonpositive!(a::Accumulator, k) = (a[k] > 0 || delete!(a.map, k)) function Base.setdiff(a::Accumulator, b::Accumulator) ret = copy(a) for (k, v) in b v > 0 || throw(MultiplicityException(k, v)) dec!(ret, k, v) drop_nonpositive!(ret, k) end return ret ##CHUNK 5 (unless those elements are added to he accumulator directly, eg via `acc[foo]=0) """ nsmallest(acc::Accumulator) = sort!(collect(acc), by=last, rev=false) nsmallest(acc::Accumulator, n) = partialsort!(collect(acc), 1:n, by=last, rev=false) ########################################################### ## Multiset operations struct MultiplicityException{K, V} <: Exception k::K v::V end function Base.showerror(io::IO, err::MultiplicityException) print(io, "When using an `Accumulator` as a multiset, all elements must have positive multiplicity") print(io, " element `$(err.k)` has multiplicity $(err.v)") end drop_nonpositive!(a::Accumulator, k) = (a[k] > 0 || delete!(a.map, k)) ##CHUNK 6 ct = copy(ct1) merge!(ct,others...) end """ reset!(ct::Accumulator, x) Remove a key `x` from an accumulator, and return its current value """ reset!(ct::Accumulator{<:Any,V}, x) where V = haskey(ct.map, x) ? pop!(ct.map, x) : zero(V) """ nlargest(acc::Accumulator, [n]) Returns a sorted vector of the `n` most common elements, with their counts. If `n` is omitted, the full sorted collection is returned. This corresponds to Python's `Counter.most_common` function. Example
83
93
DataStructures.jl
1
function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
[ 83, 93 ]
function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
left_rotate
83
93
src/avl_tree.jl
#FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 node_x.parent.rightChild = node_y end node_y.leftChild = node_x node_x.parent = node_y end """ right_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a right-rotation on `node_x` and updates `tree.root`, if required. """ function right_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.leftChild node_x.leftChild = node_y.rightChild if node_y.rightChild !== tree.nil node_y.rightChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y ##CHUNK 2 end end node.parent = node_y if node_y == nothing tree.root = node elseif node.data < node_y.data node_y.leftChild = node else node_y.rightChild = node end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild ##CHUNK 3 end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else ##CHUNK 4 node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else node_x.parent.rightChild = node_y end node_y.leftChild = node_x node_x.parent = node_y end """ right_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a right-rotation on `node_x` and updates `tree.root`, if required. #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 Performs a left-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ """ right_rotate(node_x::AVLTreeNode) Performs a right-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ function right_rotate(z::AVLTreeNode) y = z.leftChild α = y.rightChild y.rightChild = z z.leftChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end ##CHUNK 2 else L = get_subsize(node.leftChild) R = get_subsize(node.rightChild) return (L + R + Int32(1)) end end """ left_rotate(node_x::AVLTreeNode) Performs a left-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ """ right_rotate(node_x::AVLTreeNode) Performs a right-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ function right_rotate(z::AVLTreeNode) y = z.leftChild ##CHUNK 3 function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end ##CHUNK 4 node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end ##CHUNK 5 α = y.rightChild y.rightChild = z z.leftChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end """ minimum_node(tree::AVLTree, node::AVLTreeNode) Returns the AVLTreeNode with minimum value in subtree of `node`. """ function minimum_node(node::Union{AVLTreeNode, Nothing}) while node != nothing && node.leftChild != nothing node = node.leftChild end return node ##CHUNK 6 result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end
100
110
DataStructures.jl
2
function right_rotate(z::AVLTreeNode) y = z.leftChild α = y.rightChild y.rightChild = z z.leftChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
function right_rotate(z::AVLTreeNode) y = z.leftChild α = y.rightChild y.rightChild = z z.leftChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
[ 100, 110 ]
function right_rotate(z::AVLTreeNode) y = z.leftChild α = y.rightChild y.rightChild = z z.leftChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
function right_rotate(z::AVLTreeNode) y = z.leftChild α = y.rightChild y.rightChild = z z.leftChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end
right_rotate
100
110
src/avl_tree.jl
#FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 end end node.parent = node_y if node_y == nothing tree.root = node elseif node.data < node_y.data node_y.leftChild = node else node_y.rightChild = node end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild ##CHUNK 2 node_x.parent.rightChild = node_y end node_y.leftChild = node_x node_x.parent = node_y end """ right_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a right-rotation on `node_x` and updates `tree.root`, if required. """ function right_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.leftChild node_x.leftChild = node_y.rightChild if node_y.rightChild !== tree.nil node_y.rightChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y ##CHUNK 3 end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else ##CHUNK 4 node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else node_x.parent.rightChild = node_y end node_y.leftChild = node_x node_x.parent = node_y end """ right_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a right-rotation on `node_x` and updates `tree.root`, if required. #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 else L = get_subsize(node.leftChild) R = get_subsize(node.rightChild) return (L + R + Int32(1)) end end """ left_rotate(node_x::AVLTreeNode) Performs a left-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) ##CHUNK 2 Performs a left-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z) y.subsize = compute_subtree_size(y) return y end """ right_rotate(node_x::AVLTreeNode) Performs a right-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ ##CHUNK 3 function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end ##CHUNK 4 node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end ##CHUNK 5 result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end ##CHUNK 6 # computes the height of the subtree, which basically is # one added the maximum of the height of the left subtree and right subtree compute_height(node::AVLTreeNode) = Int8(1) + max(get_height(node.leftChild), get_height(node.rightChild)) get_subsize(node::AVLTreeNode_or_null) = (node == nothing) ? Int32(0) : node.subsize # compute the subtree size function compute_subtree_size(node::AVLTreeNode_or_null) if node == nothing return Int32(0) else L = get_subsize(node.leftChild) R = get_subsize(node.rightChild) return (L + R + Int32(1)) end end """ left_rotate(node_x::AVLTreeNode)
124
138
DataStructures.jl
3
function search_node(tree::AVLTree{K}, d::K) where K prev = nothing node = tree.root while node != nothing && node.data != nothing && node.data != d prev = node if d < node.data node = node.leftChild else node = node.rightChild end end return (node == nothing) ? prev : node end
function search_node(tree::AVLTree{K}, d::K) where K prev = nothing node = tree.root while node != nothing && node.data != nothing && node.data != d prev = node if d < node.data node = node.leftChild else node = node.rightChild end end return (node == nothing) ? prev : node end
[ 124, 138 ]
function search_node(tree::AVLTree{K}, d::K) where K prev = nothing node = tree.root while node != nothing && node.data != nothing && node.data != d prev = node if d < node.data node = node.leftChild else node = node.rightChild end end return (node == nothing) ? prev : node end
function search_node(tree::AVLTree{K}, d::K) where K prev = nothing node = tree.root while node != nothing && node.data != nothing && node.data != d prev = node if d < node.data node = node.leftChild else node = node.rightChild end end return (node == nothing) ? prev : node end
search_node
124
138
src/avl_tree.jl
#FILE: DataStructures.jl/src/splay_tree.jl ##CHUNK 1 x = maximum_node(s) splay!(tree, x) x.rightChild = t t.parent = x return x end end function search_node(tree::SplayTree{K}, d::K) where K node = tree.root prev = nothing while node != nothing && node.data != d prev = node if node.data < d node = node.rightChild else node = node.leftChild end end return (node == nothing) ? prev : node ##CHUNK 2 prev = nothing while node != nothing && node.data != d prev = node if node.data < d node = node.rightChild else node = node.leftChild end end return (node == nothing) ? prev : node end function Base.haskey(tree::SplayTree{K}, d::K) where K node = tree.root if node === nothing return false else node = search_node(tree, d) (node === nothing) && return false is_found = (node.data == d) ##CHUNK 3 node = SplayTreeNode{K}(d) y = nothing x = tree.root while x !== nothing y = x if node.data > x.data x = x.rightChild else x = x.leftChild end end node.parent = y if y === nothing tree.root = node elseif node.data < y.data y.leftChild = node else y.rightChild = node ##CHUNK 4 return tree end function Base.push!(tree::SplayTree{K}, d0) where K d = convert(K, d0) is_present = search_node(tree, d) if (is_present !== nothing) && (is_present.data == d) return tree end # only unique keys are inserted node = SplayTreeNode{K}(d) y = nothing x = tree.root while x !== nothing y = x if node.data > x.data x = x.rightChild else x = x.leftChild #FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 """ search_node(tree, key) function search_node(tree::RBTree{K}, d::K) where K node = tree.root while node !== tree.nil && d != node.data if d < node.data node = node.leftChild else node = node.rightChild end end return node end """ haskey(tree, key) Returns true if `key` is present in the `tree`, else returns false. """ ##CHUNK 2 function insert_node!(tree::RBTree, node::RBTreeNode) node_y = nothing node_x = tree.root while node_x !== tree.nil node_y = node_x if node.data < node_x.data node_x = node_x.leftChild else node_x = node_x.rightChild end end node.parent = node_y if node_y == nothing tree.root = node elseif node.data < node_y.data node_y.leftChild = node else node_y.rightChild = node ##CHUNK 3 end RBTree() = RBTree{Any}() Base.length(tree::RBTree) = tree.count """ search_node(tree, key) Returns the last visited node, while traversing through in binary-search-tree fashion looking for `key`. """ search_node(tree, key) function search_node(tree::RBTree{K}, d::K) where K node = tree.root while node !== tree.nil && d != node.data if d < node.data node = node.leftChild else node = node.rightChild ##CHUNK 4 function Base.haskey(tree::RBTree{K}, d::K) where K node = search_node(tree, d) return (node.data == d) end """ insert_node!(tree::RBTree, node::RBTreeNode) Inserts `node` at proper location by traversing through the `tree` in a binary-search-tree fashion. """ function insert_node!(tree::RBTree, node::RBTreeNode) node_y = nothing node_x = tree.root while node_x !== tree.nil node_y = node_x if node.data < node_x.data node_x = node_x.leftChild else node_x = node_x.rightChild #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 julia> sorted_rank(tree, 17) 9 ``` """ function sorted_rank(tree::AVLTree{K}, key::K) where K !haskey(tree, key) && throw(KeyError(key)) node = tree.root rank = 0 while node.data != key if (node.data < key) rank += (1 + get_subsize(node.leftChild)) node = node.rightChild else node = node.leftChild end end rank += (1 + get_subsize(node.leftChild)) return rank end ##CHUNK 2 """ function Base.push!(tree::AVLTree{K}, key) where K key0 = convert(K, key) insert!(tree, key0) end function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild)
162
192
DataStructures.jl
4
function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
[ 162, 192 ]
function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
insert_node
162
192
src/avl_tree.jl
#FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 """ function right_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.leftChild node_x.leftChild = node_y.rightChild if node_y.rightChild !== tree.nil node_y.rightChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else node_x.parent.rightChild = node_y end node_y.rightChild = node_x node_x.parent = node_y end """ ##CHUNK 2 end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else ##CHUNK 3 end end node.parent = node_y if node_y == nothing tree.root = node elseif node.data < node_y.data node_y.leftChild = node else node_y.rightChild = node end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild ##CHUNK 4 node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else node_x.parent.rightChild = node_y end node_y.leftChild = node_x node_x.parent = node_y end """ right_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a right-rotation on `node_x` and updates `tree.root`, if required. #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end ##CHUNK 2 result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end ##CHUNK 3 function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) ##CHUNK 4 """ push!(tree::AVLTree{K}, key) where K Insert `key` in AVL tree `tree`. """ function Base.push!(tree::AVLTree{K}, key) where K key0 = convert(K, key) insert!(tree, key0) end function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing ##CHUNK 5 # computes the height of the subtree, which basically is # one added the maximum of the height of the left subtree and right subtree compute_height(node::AVLTreeNode) = Int8(1) + max(get_height(node.leftChild), get_height(node.rightChild)) get_subsize(node::AVLTreeNode_or_null) = (node == nothing) ? Int32(0) : node.subsize # compute the subtree size function compute_subtree_size(node::AVLTreeNode_or_null) if node == nothing return Int32(0) else L = get_subsize(node.leftChild) R = get_subsize(node.rightChild) return (L + R + Int32(1)) end end """ left_rotate(node_x::AVLTreeNode) ##CHUNK 6 else L = get_subsize(node.leftChild) R = get_subsize(node.rightChild) return (L + R + Int32(1)) end end """ left_rotate(node_x::AVLTreeNode) Performs a left-rotation on `node_x`, updates height of the nodes, and returns the rotated node. """ function left_rotate(z::AVLTreeNode) y = z.rightChild α = y.leftChild y.leftChild = z z.rightChild = α z.height = compute_height(z) y.height = compute_height(y) z.subsize = compute_subtree_size(z)
212
254
DataStructures.jl
5
function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
[ 212, 254 ]
function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if get_balance(node.leftChild) >= 0 return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if get_balance(node.rightChild) <= 0 return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end
delete_node!
212
254
src/avl_tree.jl
#FILE: DataStructures.jl/src/splay_tree.jl ##CHUNK 1 # double rotation elseif node_x == parent.leftChild && parent == grand_parent.leftChild # zig-zig rotation right_rotate!(tree, grand_parent) right_rotate!(tree, parent) elseif node_x == parent.rightChild && parent == grand_parent.rightChild # zag-zag rotation left_rotate!(tree, grand_parent) left_rotate!(tree, parent) elseif node_x == parent.rightChild && parent == grand_parent.leftChild # zig-zag rotation left_rotate!(tree, node_x.parent) right_rotate!(tree, node_x.parent) else # zag-zig rotation right_rotate!(tree, node_x.parent) left_rotate!(tree, node_x.parent) end end end #FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 """ function right_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.leftChild node_x.leftChild = node_y.rightChild if node_y.rightChild !== tree.nil node_y.rightChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else node_x.parent.rightChild = node_y end node_y.rightChild = node_x node_x.parent = node_y end """ ##CHUNK 2 else # uncle is black in color if (node == parent.leftChild) # node is leftChild of its parent node = parent right_rotate!(tree, node) end # node is rightChild of its parent node.parent.color = false node.parent.parent.color = true left_rotate!(tree, node.parent.parent) end end end tree.root.color = false end """ insert!(tree, key) Inserts `key` in the `tree` if it is not present. """ ##CHUNK 3 end """ minimum_node(tree::RBTree, node::RBTreeNode) Returns the RBTreeNode with minimum value in subtree of `node`. """ function minimum_node(tree::RBTree, node::RBTreeNode) (node === tree.nil) && return node while node.leftChild !== tree.nil node = node.leftChild end return node end """ delete!(tree::RBTree, key) Deletes `key` from `tree`, if present, else returns the unmodified tree. """ ##CHUNK 4 end end """ left_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a left-rotation on `node_x` and updates `tree.root`, if required. """ function left_rotate!(tree::RBTree, node_x::RBTreeNode) node_y = node_x.rightChild node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else ##CHUNK 5 node_x.rightChild = node_y.leftChild if node_y.leftChild !== tree.nil node_y.leftChild.parent = node_x end node_y.parent = node_x.parent if (node_x.parent == nothing) tree.root = node_y elseif (node_x == node_x.parent.leftChild) node_x.parent.leftChild = node_y else node_x.parent.rightChild = node_y end node_y.leftChild = node_x node_x.parent = node_y end """ right_rotate!(tree::RBTree, node_x::RBTreeNode) Performs a right-rotation on `node_x` and updates `tree.root`, if required. #FILE: DataStructures.jl/src/balanced_tree.jl ##CHUNK 1 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end ## The following are helper routines for the insert! and delete! functions. ## They replace the 'parent' field of either an internal tree node or ## a data node at the bottom tree level. function replaceparent!(data::Vector{KDRec{K,D}}, whichind::Int, newparent::Int) where {K,D} data[whichind] = KDRec{K,D}(newparent, data[whichind].k, data[whichind].d) return nothing end #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end ##CHUNK 2 if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end function Base.insert!(tree::AVLTree{K}, d::K) where K haskey(tree, d) && return tree tree.root = insert_node(tree.root, d) tree.count += 1 return tree end ##CHUNK 3 # computes the height of the subtree, which basically is # one added the maximum of the height of the left subtree and right subtree compute_height(node::AVLTreeNode) = Int8(1) + max(get_height(node.leftChild), get_height(node.rightChild)) get_subsize(node::AVLTreeNode_or_null) = (node == nothing) ? Int32(0) : node.subsize # compute the subtree size function compute_subtree_size(node::AVLTreeNode_or_null) if node == nothing return Int32(0) else L = get_subsize(node.leftChild) R = get_subsize(node.rightChild) return (L + R + Int32(1)) end end """ left_rotate(node_x::AVLTreeNode)
290
304
DataStructures.jl
6
function sorted_rank(tree::AVLTree{K}, key::K) where K !haskey(tree, key) && throw(KeyError(key)) node = tree.root rank = 0 while node.data != key if (node.data < key) rank += (1 + get_subsize(node.leftChild)) node = node.rightChild else node = node.leftChild end end rank += (1 + get_subsize(node.leftChild)) return rank end
function sorted_rank(tree::AVLTree{K}, key::K) where K !haskey(tree, key) && throw(KeyError(key)) node = tree.root rank = 0 while node.data != key if (node.data < key) rank += (1 + get_subsize(node.leftChild)) node = node.rightChild else node = node.leftChild end end rank += (1 + get_subsize(node.leftChild)) return rank end
[ 290, 304 ]
function sorted_rank(tree::AVLTree{K}, key::K) where K !haskey(tree, key) && throw(KeyError(key)) node = tree.root rank = 0 while node.data != key if (node.data < key) rank += (1 + get_subsize(node.leftChild)) node = node.rightChild else node = node.leftChild end end rank += (1 + get_subsize(node.leftChild)) return rank end
function sorted_rank(tree::AVLTree{K}, key::K) where K !haskey(tree, key) && throw(KeyError(key)) node = tree.root rank = 0 while node.data != key if (node.data < key) rank += (1 + get_subsize(node.leftChild)) node = node.rightChild else node = node.leftChild end end rank += (1 + get_subsize(node.leftChild)) return rank end
sorted_rank
290
304
src/avl_tree.jl
#FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 """ search_node(tree, key) function search_node(tree::RBTree{K}, d::K) where K node = tree.root while node !== tree.nil && d != node.data if d < node.data node = node.leftChild else node = node.rightChild end end return node end """ haskey(tree, key) Returns true if `key` is present in the `tree`, else returns false. """ ##CHUNK 2 end RBTree() = RBTree{Any}() Base.length(tree::RBTree) = tree.count """ search_node(tree, key) Returns the last visited node, while traversing through in binary-search-tree fashion looking for `key`. """ search_node(tree, key) function search_node(tree::RBTree{K}, d::K) where K node = tree.root while node !== tree.nil && d != node.data if d < node.data node = node.leftChild else node = node.rightChild ##CHUNK 3 function Base.haskey(tree::RBTree{K}, d::K) where K node = search_node(tree, d) return (node.data == d) end """ insert_node!(tree::RBTree, node::RBTreeNode) Inserts `node` at proper location by traversing through the `tree` in a binary-search-tree fashion. """ function insert_node!(tree::RBTree, node::RBTreeNode) node_y = nothing node_x = tree.root while node_x !== tree.nil node_y = node_x if node.data < node_x.data node_x = node_x.leftChild else node_x = node_x.rightChild #FILE: DataStructures.jl/src/splay_tree.jl ##CHUNK 1 node = SplayTreeNode{K}(d) y = nothing x = tree.root while x !== nothing y = x if node.data > x.data x = x.rightChild else x = x.leftChild end end node.parent = y if y === nothing tree.root = node elseif node.data < y.data y.leftChild = node else y.rightChild = node #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 if balance < -1 if key > node.rightChild.data return left_rotate(node) else node.rightChild = right_rotate(node.rightChild) return left_rotate(node) end end return node end function Base.insert!(tree::AVLTree{K}, d::K) where K haskey(tree, d) && return tree tree.root = insert_node(tree.root, d) tree.count += 1 return tree end ##CHUNK 2 """ push!(tree::AVLTree{K}, key) where K Insert `key` in AVL tree `tree`. """ function Base.push!(tree::AVLTree{K}, key) where K key0 = convert(K, key) insert!(tree, key0) end function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result ##CHUNK 3 function insert_node(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = insert_node(node.leftChild, key) else node.rightChild = insert_node(node.rightChild, key) end node.subsize = compute_subtree_size(node) node.height = compute_height(node) balance = get_balance(node) if balance > 1 if key < node.leftChild.data return right_rotate(node) else node.leftChild = left_rotate(node.leftChild) return right_rotate(node) end end ##CHUNK 4 return node end function search_node(tree::AVLTree{K}, d::K) where K prev = nothing node = tree.root while node != nothing && node.data != nothing && node.data != d prev = node if d < node.data node = node.leftChild else node = node.rightChild end end return (node == nothing) ? prev : node end """ ##CHUNK 5 function Base.delete!(tree::AVLTree{K}, k::K) where K # if the key is not in the tree, do nothing and return the tree !haskey(tree, k) && return tree # if the key is present, delete it from the tree tree.root = delete_node!(tree.root, k) tree.count -= 1 return tree end """ sorted_rank(tree::AVLTree{K}, key::K) where K Returns the rank of `key` present in the `tree`, if it present. A `KeyError` is thrown if `key` is not present. # Examples ```jldoctest julia> tree = AVLTree{Int}(); ##CHUNK 6 function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result elseif node.rightChild == nothing result = node.leftChild return result else result = minimum_node(node.rightChild) node.data = result.data node.rightChild = delete_node!(node.rightChild, result.data) end end
329
345
DataStructures.jl
7
function Base.getindex(tree::AVLTree{K}, ind::Integer) where K @boundscheck (1 <= ind <= tree.count) || throw(BoundsError("$ind should be in between 1 and $(tree.count)")) function traverse_tree(node::AVLTreeNode_or_null, idx) if (node != nothing) L = get_subsize(node.leftChild) if idx <= L return traverse_tree(node.leftChild, idx) elseif idx == L + 1 return node.data else return traverse_tree(node.rightChild, idx - L - 1) end end end value = traverse_tree(tree.root, ind) return value end
function Base.getindex(tree::AVLTree{K}, ind::Integer) where K @boundscheck (1 <= ind <= tree.count) || throw(BoundsError("$ind should be in between 1 and $(tree.count)")) function traverse_tree(node::AVLTreeNode_or_null, idx) if (node != nothing) L = get_subsize(node.leftChild) if idx <= L return traverse_tree(node.leftChild, idx) elseif idx == L + 1 return node.data else return traverse_tree(node.rightChild, idx - L - 1) end end end value = traverse_tree(tree.root, ind) return value end
[ 329, 345 ]
function Base.getindex(tree::AVLTree{K}, ind::Integer) where K @boundscheck (1 <= ind <= tree.count) || throw(BoundsError("$ind should be in between 1 and $(tree.count)")) function traverse_tree(node::AVLTreeNode_or_null, idx) if (node != nothing) L = get_subsize(node.leftChild) if idx <= L return traverse_tree(node.leftChild, idx) elseif idx == L + 1 return node.data else return traverse_tree(node.rightChild, idx - L - 1) end end end value = traverse_tree(tree.root, ind) return value end
function Base.getindex(tree::AVLTree{K}, ind::Integer) where K @boundscheck (1 <= ind <= tree.count) || throw(BoundsError("$ind should be in between 1 and $(tree.count)")) function traverse_tree(node::AVLTreeNode_or_null, idx) if (node != nothing) L = get_subsize(node.leftChild) if idx <= L return traverse_tree(node.leftChild, idx) elseif idx == L + 1 return node.data else return traverse_tree(node.rightChild, idx - L - 1) end end end value = traverse_tree(tree.root, ind) return value end
traverse_tree
329
345
src/avl_tree.jl
#FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 Base.in(key, tree::RBTree) = haskey(tree, key) """ getindex(tree, ind) Gets the key present at index `ind` of the tree. Indexing is done in increasing order of key. """ function Base.getindex(tree::RBTree{K}, ind) where K @boundscheck (1 <= ind <= tree.count) || throw(ArgumentError("$ind should be in between 1 and $(tree.count)")) function traverse_tree_inorder(node::RBTreeNode{K}) where K if (node !== tree.nil) left = traverse_tree_inorder(node.leftChild) right = traverse_tree_inorder(node.rightChild) append!(push!(left, node.data), right) else return K[] end end arr = traverse_tree_inorder(tree.root) ##CHUNK 2 rb_transplant(tree, z, y) y.leftChild = z.leftChild y.leftChild.parent = y y.color = z.color end !y_original_color && delete_fix(tree, x) tree.count -= 1 return tree end Base.in(key, tree::RBTree) = haskey(tree, key) """ getindex(tree, ind) Gets the key present at index `ind` of the tree. Indexing is done in increasing order of key. """ function Base.getindex(tree::RBTree{K}, ind) where K @boundscheck (1 <= ind <= tree.count) || throw(ArgumentError("$ind should be in between 1 and $(tree.count)")) ##CHUNK 3 """ search_node(tree, key) function search_node(tree::RBTree{K}, d::K) where K node = tree.root while node !== tree.nil && d != node.data if d < node.data node = node.leftChild else node = node.rightChild end end return node end """ haskey(tree, key) Returns true if `key` is present in the `tree`, else returns false. """ ##CHUNK 4 end RBTree() = RBTree{Any}() Base.length(tree::RBTree) = tree.count """ search_node(tree, key) Returns the last visited node, while traversing through in binary-search-tree fashion looking for `key`. """ search_node(tree, key) function search_node(tree::RBTree{K}, d::K) where K node = tree.root while node !== tree.nil && d != node.data if d < node.data node = node.leftChild else node = node.rightChild ##CHUNK 5 function traverse_tree_inorder(node::RBTreeNode{K}) where K if (node !== tree.nil) left = traverse_tree_inorder(node.leftChild) right = traverse_tree_inorder(node.rightChild) append!(push!(left, node.data), right) else return K[] end end arr = traverse_tree_inorder(tree.root) return @inbounds arr[ind] end #FILE: DataStructures.jl/src/splay_tree.jl ##CHUNK 1 end splay!(tree, node) tree.count += 1 return tree end function Base.getindex(tree::SplayTree{K}, ind) where K @boundscheck (1 <= ind <= tree.count) || throw(KeyError("$ind should be in between 1 and $(tree.count)")) function traverse_tree_inorder(node::Union{SplayTreeNode, Nothing}) if (node != nothing) left = traverse_tree_inorder(node.leftChild) right = traverse_tree_inorder(node.rightChild) append!(push!(left, node.data), right) else return K[] end end arr = traverse_tree_inorder(tree.root) return @inbounds arr[ind] end ##CHUNK 2 end end node.parent = y if y === nothing tree.root = node elseif node.data < y.data y.leftChild = node else y.rightChild = node end splay!(tree, node) tree.count += 1 return tree end function Base.getindex(tree::SplayTree{K}, ind) where K @boundscheck (1 <= ind <= tree.count) || throw(KeyError("$ind should be in between 1 and $(tree.count)")) function traverse_tree_inorder(node::Union{SplayTreeNode, Nothing}) if (node != nothing) #CURRENT FILE: DataStructures.jl/src/avl_tree.jl ##CHUNK 1 !haskey(tree, key) && throw(KeyError(key)) node = tree.root rank = 0 while node.data != key if (node.data < key) rank += (1 + get_subsize(node.leftChild)) node = node.rightChild else node = node.leftChild end end rank += (1 + get_subsize(node.leftChild)) return rank end """ getindex(tree::AVLTree{K}, ind::Integer) where K Considering the elements of `tree` sorted, returns the `ind`-th element in `tree`. Search operation is performed in \$O(\\log n)\$ time complexity. ##CHUNK 2 return node end function search_node(tree::AVLTree{K}, d::K) where K prev = nothing node = tree.root while node != nothing && node.data != nothing && node.data != d prev = node if d < node.data node = node.leftChild else node = node.rightChild end end return (node == nothing) ? prev : node end """ ##CHUNK 3 """ push!(tree::AVLTree{K}, key) where K Insert `key` in AVL tree `tree`. """ function Base.push!(tree::AVLTree{K}, key) where K key0 = convert(K, key) insert!(tree, key0) end function delete_node!(node::AVLTreeNode{K}, key::K) where K if key < node.data node.leftChild = delete_node!(node.leftChild, key) elseif key > node.data node.rightChild = delete_node!(node.rightChild, key) else if node.leftChild == nothing result = node.rightChild return result
238
250
DataStructures.jl
8
function Base.empty!(t::BalancedTree23) resize!(t.data,2) initializeData!(t.data) resize!(t.tree,1) initializeTree!(t.tree) t.depth = 1 t.rootloc = 1 empty!(t.freetreeinds) empty!(t.freedatainds) empty!(t.useddatacells) push!(t.useddatacells, 1, 2) return nothing end
function Base.empty!(t::BalancedTree23) resize!(t.data,2) initializeData!(t.data) resize!(t.tree,1) initializeTree!(t.tree) t.depth = 1 t.rootloc = 1 empty!(t.freetreeinds) empty!(t.freedatainds) empty!(t.useddatacells) push!(t.useddatacells, 1, 2) return nothing end
[ 238, 250 ]
function Base.empty!(t::BalancedTree23) resize!(t.data,2) initializeData!(t.data) resize!(t.tree,1) initializeTree!(t.tree) t.depth = 1 t.rootloc = 1 empty!(t.freetreeinds) empty!(t.freedatainds) empty!(t.useddatacells) push!(t.useddatacells, 1, 2) return nothing end
function Base.empty!(t::BalancedTree23) resize!(t.data,2) initializeData!(t.data) resize!(t.tree,1) initializeTree!(t.tree) t.depth = 1 t.rootloc = 1 empty!(t.freetreeinds) empty!(t.freedatainds) empty!(t.useddatacells) push!(t.useddatacells, 1, 2) return nothing end
Base.empty!
238
250
src/balanced_tree.jl
#FILE: DataStructures.jl/test/test_sorted_containers.jl ##CHUNK 1 end remove_spaces(s::String) = replace(s, r"\s+"=>"") ## Function checkcorrectness checks a balanced tree for correctness. function checkcorrectness(t::DataStructures.BalancedTree23{K,D,Ord}, allowdups=false) where {K,D,Ord <: Ordering} dsz = size(t.data, 1) tsz = size(t.tree, 1) r = t.rootloc bfstreenodes = Vector{Int}() tdpth = t.depth intree = BitSet() levstart = Vector{Int}(undef, tdpth) push!(bfstreenodes, r) levstart[1] = 1 ##CHUNK 2 throw(ErrorException("t.useddatacells has indices larger than t.data size")) end for i = 1 : dsz if (in(i, dataused) && !in(i, t.useddatacells)) || (!in(i,dataused) && in(i, t.useddatacells)) throw(ErrorException("Mismatch between actual data cells used and useddatacells array")) end if (in(i, freedata) && in(i, dataused)) || (!in(i,freedata) && !in(i, dataused)) throw(ErrorException("Mismatch between t.freedatainds and t.useddatacells")) end end freetree = BitSet() for i = 1 : size(t.freetreeinds,1) tfi = t.freetreeinds[i] if in(tfi, freetree) throw(ErrorException("Free tree index repeated twice")) end if tfi < 1 || tfi > tsz throw(ErrorException("Free tree index out of range")) #CURRENT FILE: DataStructures.jl/src/balanced_tree.jl ##CHUNK 1 mutable struct BalancedTree23{K, D, Ord <: Ordering} ord::Ord data::Vector{KDRec{K,D}} tree::Vector{TreeNode{K}} rootloc::Int depth::Int freetreeinds::Vector{Int} freedatainds::Vector{Int} useddatacells::BitSet # The next two arrays are used as a workspace by the delete! # function. deletionchild::Vector{Int} deletionleftkey::Vector{K} function BalancedTree23{K,D,Ord}(ord1::Ord) where {K,D,Ord<:Ordering} tree1 = Vector{TreeNode{K}}(undef, 1) initializeTree!(tree1) data1 = Vector{KDRec{K,D}}(undef, 2) initializeData!(data1) u1 = BitSet() push!(u1, 1, 2) ##CHUNK 2 if exactfound && !allowdups t.data[leafind] = KDRec{K,D}(parent, k,d) return false, leafind end # We get here if k was not already found in the tree or # if duplicates are allowed. # In this case we insert a new node. depth = t.depth ord = t.ord ## Store the new data item in the tree's data array. Later ## go back and fix the parent. newind = push_or_reuse!(t.data, t.freedatainds, KDRec{K,D}(0,k,d)) push!(t.useddatacells, newind) p1 = parent newchild = newind minkeynewchild = k splitroot = false ##CHUNK 3 t.tree[rightsib].splitkey1) if curdepth == t.depth replaceparent!(t.data, rc1, p) replaceparent!(t.data, rc2, p) else replaceparent!(t.tree, rc1, p) replaceparent!(t.tree, rc2, p) end push!(t.freetreeinds, rightsib) newchildcount = 1 t.deletionchild[1] = p else rc1 = t.tree[rightsib].child1 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, 0, pparent, t.tree[pparent].splitkey1, defaultKey) sk1 = t.tree[rightsib].splitkey1 t.tree[rightsib] = TreeNode{K}(t.tree[rightsib].child2, t.tree[rightsib].child3, ##CHUNK 4 # if newchild4==0 if newchild4 == 0 # Change the parent from a 2-node to a 3-node t.tree[p1] = TreeNode{K}(newchild1, newchild2, newchild3, p1parent, minkeychild2, minkeychild3) if curdepth == depth replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth ##CHUNK 5 t.deletionchild[newchildcount] = c1 t.deletionleftkey[newchildcount] = t.data[c1].k end c2 = t.tree[p].child2 if c2 != it newchildcount += 1 t.deletionchild[newchildcount] = c2 t.deletionleftkey[newchildcount] = t.data[c2].k end c3 = t.tree[p].child3 if c3 != it && c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.data[c3].k end @invariant newchildcount == 1 || newchildcount == 2 push!(t.freedatainds, it) pop!(t.useddatacells,it) defaultKey = t.tree[1].splitkey1 curdepth = t.depth ##CHUNK 6 ## tree array (locations are freed due to deletion) ## freedatainds: Array of indices of free locations in the ## data array (locations are freed due to deletion) ## useddatacells: BitSet (i.e., bit vector) showing which ## data cells are taken. The complementary positions are ## exactly those stored in freedatainds. This array is ## used only for error checking. ## deletionchild and deletionleftkey are two work-arrays ## for the delete function. mutable struct BalancedTree23{K, D, Ord <: Ordering} ord::Ord data::Vector{KDRec{K,D}} tree::Vector{TreeNode{K}} rootloc::Int depth::Int freetreeinds::Vector{Int} freedatainds::Vector{Int} useddatacells::BitSet # The next two arrays are used as a workspace by the delete! ##CHUNK 7 lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 2 t.deletionchild[1] = t.tree[pparent].child1 t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionchild[2] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, ##CHUNK 8 else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 1 t.deletionchild[1] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else
292
309
DataStructures.jl
9
function findkeyless(t::BalancedTree23, k) curnode = t.rootloc for depthcount = 1 : t.depth - 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_nonleaf(t.ord, thisnode, k) : cmp3le_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end
function findkeyless(t::BalancedTree23, k) curnode = t.rootloc for depthcount = 1 : t.depth - 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_nonleaf(t.ord, thisnode, k) : cmp3le_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end
[ 292, 309 ]
function findkeyless(t::BalancedTree23, k) curnode = t.rootloc for depthcount = 1 : t.depth - 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_nonleaf(t.ord, thisnode, k) : cmp3le_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end
function findkeyless(t::BalancedTree23, k) curnode = t.rootloc for depthcount = 1 : t.depth - 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_nonleaf(t.ord, thisnode, k) : cmp3le_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end
findkeyless
292
309
src/balanced_tree.jl
#FILE: DataStructures.jl/test/test_sorted_containers.jl ##CHUNK 1 mk2 = minkeys[cp] cp += 1 if t.tree[c2].parent != anc throw(ErrorException("Parent/child2 links do not match")) end c3 = t.tree[anc].child3 my_assert(s == levstart[curdepth] || lt(t.ord,mk1,mk2) || (!lt(t.ord,mk2,mk1) && allowdups)) if c3 > 0 if t.tree[c3].parent != anc throw(ErrorException("Parent/child3 links do not match")) end mk3 = minkeys[cp] cp += 1 my_assert(lt(t.ord,mk2, mk3) || !lt(t.ord,mk3,mk2) && allowdups) end if s > levstart[curdepth] minkeys[s] = mk1 end ##CHUNK 2 my_assert(c1 == bfstreenodes[cp]) if s > levstart[curdepth] mk1 = minkeys[cp] end cp += 1 if t.tree[c1].parent != anc throw(ErrorException("Parent/child1 links do not match")) end c2 = t.tree[anc].child2 my_assert(c2 == bfstreenodes[cp]) mk2 = minkeys[cp] cp += 1 if t.tree[c2].parent != anc throw(ErrorException("Parent/child2 links do not match")) end c3 = t.tree[anc].child3 my_assert(s == levstart[curdepth] || lt(t.ord,mk1,mk2) || (!lt(t.ord,mk2,mk1) && allowdups)) if c3 > 0 if t.tree[c3].parent != anc #CURRENT FILE: DataStructures.jl/src/balanced_tree.jl ##CHUNK 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2_nonleaf(t.ord, thisnode, k) : cmp3_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2_leaf(t.ord, thisnode, k) : cmp3_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 @inbounds return curnode, (curnode > 2 && eq(t.ord, t.data[curnode].k, k)) end ## The findkeyless function finds the index of a (key,data) pair in the tree that ## with the greatest key that is less than the given key. If there is no ## key less than the given key, then it returns 1 (the before-start node). ##CHUNK 2 ## where the given key lives (if it is present), or ## if the key is not present, to the lower bound for the key, ## i.e., the data item that comes immediately before it. ## If there are multiple equal keys, then it finds the last one. ## It returns the index of the key found and a boolean indicating ## whether the exact key was found or not. function findkey(t::BalancedTree23, k) curnode = t.rootloc for depthcount = 1 : t.depth - 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2_nonleaf(t.ord, thisnode, k) : cmp3_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2_leaf(t.ord, thisnode, k) : ##CHUNK 3 treenode::TreeNode, k) !lt(o,treenode.splitkey1, k) ? 1 : !lt(o,treenode.splitkey2, k) ? 2 : 3 end @inline function cmp3le_leaf(o::Ordering, treenode::TreeNode, k) !lt(o,treenode.splitkey1,k) ? 1 : (treenode.child3 == 2 || !lt(o,treenode.splitkey2, k)) ? 2 : 3 end ## The empty! function deletes all data in the balanced tree. ## Therefore, it invalidates all indices. function Base.empty!(t::BalancedTree23) resize!(t.data,2) initializeData!(t.data) ##CHUNK 4 ## Function cmp3le checks a tree node with three children ## against a given key, and returns 1 if the given key is ## less than or equal to the node's splitkey1, 2 if less than or equal ## to splitkey2, or ## 3 else. Special case ## if the node is a leaf and its right child is the end ## of the sorted order. @inline function cmp3le_nonleaf(o::Ordering, treenode::TreeNode, k) !lt(o,treenode.splitkey1, k) ? 1 : !lt(o,treenode.splitkey2, k) ? 2 : 3 end @inline function cmp3le_leaf(o::Ordering, treenode::TreeNode, k) !lt(o,treenode.splitkey1,k) ? 1 : ##CHUNK 5 ## less than the node's splitkey1, 2 if the key is greater than or ## equal to splitkey1 but less than splitkey2, or 3 else. Special case ## if the node is a leaf and its right child is the end ## of the sorted order. @inline function cmp3_nonleaf(o::Ordering, treenode::TreeNode, k) lt(o, k, treenode.splitkey1) ? 1 : lt(o, k, treenode.splitkey2) ? 2 : 3 end @inline function cmp3_leaf(o::Ordering, treenode::TreeNode, k) lt(o, k, treenode.splitkey1) ? 1 : (treenode.child3 == 2 || lt(o, k, treenode.splitkey2)) ? 2 : 3 end ##CHUNK 6 end @inline function cmp3_leaf(o::Ordering, treenode::TreeNode, k) lt(o, k, treenode.splitkey1) ? 1 : (treenode.child3 == 2 || lt(o, k, treenode.splitkey2)) ? 2 : 3 end ## Function cmp2le checks a tree node with two children ## against a given key, and returns 1 if the given key is ## less than or equal to the node's splitkey or 2 else. Special case ## if the node is a leaf and its right child is the end ## of the sorted order. @inline function cmp2le_nonleaf(o::Ordering, treenode::TreeNode, k) ##CHUNK 7 !lt(o,treenode.splitkey1,k) ? 1 : 2 end @inline function cmp2le_leaf(o::Ordering, treenode::TreeNode, k) treenode.child2 == 2 || !lt(o,treenode.splitkey1,k) ? 1 : 2 end ## Function cmp3le checks a tree node with three children ## against a given key, and returns 1 if the given key is ## less than or equal to the node's splitkey1, 2 if less than or equal ## to splitkey2, or ## 3 else. Special case ## if the node is a leaf and its right child is the end ## of the sorted order. @inline function cmp3le_nonleaf(o::Ordering, ##CHUNK 8 ## if the node is a leaf and its right child is the end ## of the sorted order. @inline function cmp2_nonleaf(o::Ordering, treenode::TreeNode, k) lt(o, k, treenode.splitkey1) ? 1 : 2 end @inline function cmp2_leaf(o::Ordering, treenode::TreeNode, k) (treenode.child2 == 2) || lt(o, k, treenode.splitkey1) ? 1 : 2 end ## Function cmp3 checks a tree node with three children ## against a given key, and returns 1 if the given key is
358
520
DataStructures.jl
10
function Base.insert!(t::BalancedTree23{K,D,Ord}, k, d, allowdups::Bool) where {K,D,Ord <: Ordering} ## First we find the greatest data node that is <= k. leafind, exactfound = findkey(t, k) parent = t.data[leafind].parent ## The following code is necessary because in the case of a ## brand new tree, the initial tree and data entries were incompletely ## initialized by the constructor. In this case, the call to insert! ## underway carries ## valid K and D values, so these valid values may now be ## stored in the dummy placeholder nodes so that they no ## longer hold undefined references. if size(t.data,1) == 2 @invariant t.rootloc == 1 && t.depth == 1 t.tree[1] = TreeNode{K}(t.tree[1].child1, t.tree[1].child2, t.tree[1].child3, t.tree[1].parent, k, k) t.data[1] = KDRec{K,D}(t.data[1].parent, k, d) t.data[2] = KDRec{K,D}(t.data[2].parent, k, d) end ## If we have found exactly k in the tree, then we ## replace the data associated with k and return. if exactfound && !allowdups t.data[leafind] = KDRec{K,D}(parent, k,d) return false, leafind end # We get here if k was not already found in the tree or # if duplicates are allowed. # In this case we insert a new node. depth = t.depth ord = t.ord ## Store the new data item in the tree's data array. Later ## go back and fix the parent. newind = push_or_reuse!(t.data, t.freedatainds, KDRec{K,D}(0,k,d)) push!(t.useddatacells, newind) p1 = parent newchild = newind minkeynewchild = k splitroot = false curdepth = depth existingchild = leafind ## This loop ascends the tree (i.e., follows the path from a leaf to the root) ## starting from the parent p1 of ## where the new key k will go. ## Variables updated by the loop: ## p1: parent of where the new node goes ## newchild: index of the child to be inserted ## minkeynewchild: the minimum key in the subtree rooted at newchild ## existingchild: a child of p1; the newchild must ## be inserted in the slot to the right of existingchild ## curdepth: depth of newchild ## For each 3-node we encounter ## during the ascent, we add a new child, which requires splitting ## the 3-node into two 2-nodes. Then we keep going until we hit the root. ## If we encounter a 2-node, then the ascent can stop; we can ## change the 2-node to a 3-node with the new child. while true # Let newchild1,...newchild4 be the new children of # the parent node # Initially, take the three children of the existing parent # node and set newchild4 to 0. newchild1 = t.tree[p1].child1 newchild2 = t.tree[p1].child2 minkeychild2 = t.tree[p1].splitkey1 newchild3 = t.tree[p1].child3 minkeychild3 = t.tree[p1].splitkey2 p1parent = t.tree[p1].parent newchild4 = 0 # Now figure out which of the 4 children is the new node # and insert it into newchild1 ... newchild4 if newchild1 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild2 minkeychild3 = minkeychild2 newchild2 = newchild minkeychild2 = minkeynewchild elseif newchild2 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild minkeychild3 = minkeynewchild elseif newchild3 == existingchild newchild4 = newchild minkeychild4 = minkeynewchild else throw(AssertionError("Tree structure is corrupted 1")) end # Two cases: either we need to split the tree node # if newchild4>0 else we convert a 2-node to a 3-node # if newchild4==0 if newchild4 == 0 # Change the parent from a 2-node to a 3-node t.tree[p1] = TreeNode{K}(newchild1, newchild2, newchild3, p1parent, minkeychild2, minkeychild3) if curdepth == depth replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth replaceparent!(t.data, newchild2, p1) replaceparent!(t.data, newchild3, newparentnum) replaceparent!(t.data, newchild4, newparentnum) else replaceparent!(t.tree, newchild2, p1) replaceparent!(t.tree, newchild3, newparentnum) replaceparent!(t.tree, newchild4, newparentnum) end # Update the loop variables for the next level of the # ascension existingchild = p1 newchild = newparentnum p1 = p1parent minkeynewchild = minkeychild3 curdepth -= 1 if curdepth == 0 splitroot = true break end end # If the root has been split, then we need to add a level # to the tree that is the parent of the old root and the new node. if splitroot @invariant existingchild == t.rootloc newroot = TreeNode{K}(existingchild, newchild, 0, 0, minkeynewchild, minkeynewchild) newrootloc = push_or_reuse!(t.tree, t.freetreeinds, newroot) replaceparent!(t.tree, existingchild, newrootloc) replaceparent!(t.tree, newchild, newrootloc) t.rootloc = newrootloc t.depth += 1 end return true, newind end
function Base.insert!(t::BalancedTree23{K,D,Ord}, k, d, allowdups::Bool) where {K,D,Ord <: Ordering} ## First we find the greatest data node that is <= k. leafind, exactfound = findkey(t, k) parent = t.data[leafind].parent ## The following code is necessary because in the case of a ## brand new tree, the initial tree and data entries were incompletely ## initialized by the constructor. In this case, the call to insert! ## underway carries ## valid K and D values, so these valid values may now be ## stored in the dummy placeholder nodes so that they no ## longer hold undefined references. if size(t.data,1) == 2 @invariant t.rootloc == 1 && t.depth == 1 t.tree[1] = TreeNode{K}(t.tree[1].child1, t.tree[1].child2, t.tree[1].child3, t.tree[1].parent, k, k) t.data[1] = KDRec{K,D}(t.data[1].parent, k, d) t.data[2] = KDRec{K,D}(t.data[2].parent, k, d) end ## If we have found exactly k in the tree, then we ## replace the data associated with k and return. if exactfound && !allowdups t.data[leafind] = KDRec{K,D}(parent, k,d) return false, leafind end # We get here if k was not already found in the tree or # if duplicates are allowed. # In this case we insert a new node. depth = t.depth ord = t.ord ## Store the new data item in the tree's data array. Later ## go back and fix the parent. newind = push_or_reuse!(t.data, t.freedatainds, KDRec{K,D}(0,k,d)) push!(t.useddatacells, newind) p1 = parent newchild = newind minkeynewchild = k splitroot = false curdepth = depth existingchild = leafind ## This loop ascends the tree (i.e., follows the path from a leaf to the root) ## starting from the parent p1 of ## where the new key k will go. ## Variables updated by the loop: ## p1: parent of where the new node goes ## newchild: index of the child to be inserted ## minkeynewchild: the minimum key in the subtree rooted at newchild ## existingchild: a child of p1; the newchild must ## be inserted in the slot to the right of existingchild ## curdepth: depth of newchild ## For each 3-node we encounter ## during the ascent, we add a new child, which requires splitting ## the 3-node into two 2-nodes. Then we keep going until we hit the root. ## If we encounter a 2-node, then the ascent can stop; we can ## change the 2-node to a 3-node with the new child. while true # Let newchild1,...newchild4 be the new children of # the parent node # Initially, take the three children of the existing parent # node and set newchild4 to 0. newchild1 = t.tree[p1].child1 newchild2 = t.tree[p1].child2 minkeychild2 = t.tree[p1].splitkey1 newchild3 = t.tree[p1].child3 minkeychild3 = t.tree[p1].splitkey2 p1parent = t.tree[p1].parent newchild4 = 0 # Now figure out which of the 4 children is the new node # and insert it into newchild1 ... newchild4 if newchild1 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild2 minkeychild3 = minkeychild2 newchild2 = newchild minkeychild2 = minkeynewchild elseif newchild2 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild minkeychild3 = minkeynewchild elseif newchild3 == existingchild newchild4 = newchild minkeychild4 = minkeynewchild else throw(AssertionError("Tree structure is corrupted 1")) end # Two cases: either we need to split the tree node # if newchild4>0 else we convert a 2-node to a 3-node # if newchild4==0 if newchild4 == 0 # Change the parent from a 2-node to a 3-node t.tree[p1] = TreeNode{K}(newchild1, newchild2, newchild3, p1parent, minkeychild2, minkeychild3) if curdepth == depth replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth replaceparent!(t.data, newchild2, p1) replaceparent!(t.data, newchild3, newparentnum) replaceparent!(t.data, newchild4, newparentnum) else replaceparent!(t.tree, newchild2, p1) replaceparent!(t.tree, newchild3, newparentnum) replaceparent!(t.tree, newchild4, newparentnum) end # Update the loop variables for the next level of the # ascension existingchild = p1 newchild = newparentnum p1 = p1parent minkeynewchild = minkeychild3 curdepth -= 1 if curdepth == 0 splitroot = true break end end # If the root has been split, then we need to add a level # to the tree that is the parent of the old root and the new node. if splitroot @invariant existingchild == t.rootloc newroot = TreeNode{K}(existingchild, newchild, 0, 0, minkeynewchild, minkeynewchild) newrootloc = push_or_reuse!(t.tree, t.freetreeinds, newroot) replaceparent!(t.tree, existingchild, newrootloc) replaceparent!(t.tree, newchild, newrootloc) t.rootloc = newrootloc t.depth += 1 end return true, newind end
[ 358, 520 ]
function Base.insert!(t::BalancedTree23{K,D,Ord}, k, d, allowdups::Bool) where {K,D,Ord <: Ordering} ## First we find the greatest data node that is <= k. leafind, exactfound = findkey(t, k) parent = t.data[leafind].parent ## The following code is necessary because in the case of a ## brand new tree, the initial tree and data entries were incompletely ## initialized by the constructor. In this case, the call to insert! ## underway carries ## valid K and D values, so these valid values may now be ## stored in the dummy placeholder nodes so that they no ## longer hold undefined references. if size(t.data,1) == 2 @invariant t.rootloc == 1 && t.depth == 1 t.tree[1] = TreeNode{K}(t.tree[1].child1, t.tree[1].child2, t.tree[1].child3, t.tree[1].parent, k, k) t.data[1] = KDRec{K,D}(t.data[1].parent, k, d) t.data[2] = KDRec{K,D}(t.data[2].parent, k, d) end ## If we have found exactly k in the tree, then we ## replace the data associated with k and return. if exactfound && !allowdups t.data[leafind] = KDRec{K,D}(parent, k,d) return false, leafind end # We get here if k was not already found in the tree or # if duplicates are allowed. # In this case we insert a new node. depth = t.depth ord = t.ord ## Store the new data item in the tree's data array. Later ## go back and fix the parent. newind = push_or_reuse!(t.data, t.freedatainds, KDRec{K,D}(0,k,d)) push!(t.useddatacells, newind) p1 = parent newchild = newind minkeynewchild = k splitroot = false curdepth = depth existingchild = leafind ## This loop ascends the tree (i.e., follows the path from a leaf to the root) ## starting from the parent p1 of ## where the new key k will go. ## Variables updated by the loop: ## p1: parent of where the new node goes ## newchild: index of the child to be inserted ## minkeynewchild: the minimum key in the subtree rooted at newchild ## existingchild: a child of p1; the newchild must ## be inserted in the slot to the right of existingchild ## curdepth: depth of newchild ## For each 3-node we encounter ## during the ascent, we add a new child, which requires splitting ## the 3-node into two 2-nodes. Then we keep going until we hit the root. ## If we encounter a 2-node, then the ascent can stop; we can ## change the 2-node to a 3-node with the new child. while true # Let newchild1,...newchild4 be the new children of # the parent node # Initially, take the three children of the existing parent # node and set newchild4 to 0. newchild1 = t.tree[p1].child1 newchild2 = t.tree[p1].child2 minkeychild2 = t.tree[p1].splitkey1 newchild3 = t.tree[p1].child3 minkeychild3 = t.tree[p1].splitkey2 p1parent = t.tree[p1].parent newchild4 = 0 # Now figure out which of the 4 children is the new node # and insert it into newchild1 ... newchild4 if newchild1 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild2 minkeychild3 = minkeychild2 newchild2 = newchild minkeychild2 = minkeynewchild elseif newchild2 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild minkeychild3 = minkeynewchild elseif newchild3 == existingchild newchild4 = newchild minkeychild4 = minkeynewchild else throw(AssertionError("Tree structure is corrupted 1")) end # Two cases: either we need to split the tree node # if newchild4>0 else we convert a 2-node to a 3-node # if newchild4==0 if newchild4 == 0 # Change the parent from a 2-node to a 3-node t.tree[p1] = TreeNode{K}(newchild1, newchild2, newchild3, p1parent, minkeychild2, minkeychild3) if curdepth == depth replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth replaceparent!(t.data, newchild2, p1) replaceparent!(t.data, newchild3, newparentnum) replaceparent!(t.data, newchild4, newparentnum) else replaceparent!(t.tree, newchild2, p1) replaceparent!(t.tree, newchild3, newparentnum) replaceparent!(t.tree, newchild4, newparentnum) end # Update the loop variables for the next level of the # ascension existingchild = p1 newchild = newparentnum p1 = p1parent minkeynewchild = minkeychild3 curdepth -= 1 if curdepth == 0 splitroot = true break end end # If the root has been split, then we need to add a level # to the tree that is the parent of the old root and the new node. if splitroot @invariant existingchild == t.rootloc newroot = TreeNode{K}(existingchild, newchild, 0, 0, minkeynewchild, minkeynewchild) newrootloc = push_or_reuse!(t.tree, t.freetreeinds, newroot) replaceparent!(t.tree, existingchild, newrootloc) replaceparent!(t.tree, newchild, newrootloc) t.rootloc = newrootloc t.depth += 1 end return true, newind end
function Base.insert!(t::BalancedTree23{K,D,Ord}, k, d, allowdups::Bool) where {K,D,Ord <: Ordering} ## First we find the greatest data node that is <= k. leafind, exactfound = findkey(t, k) parent = t.data[leafind].parent ## The following code is necessary because in the case of a ## brand new tree, the initial tree and data entries were incompletely ## initialized by the constructor. In this case, the call to insert! ## underway carries ## valid K and D values, so these valid values may now be ## stored in the dummy placeholder nodes so that they no ## longer hold undefined references. if size(t.data,1) == 2 @invariant t.rootloc == 1 && t.depth == 1 t.tree[1] = TreeNode{K}(t.tree[1].child1, t.tree[1].child2, t.tree[1].child3, t.tree[1].parent, k, k) t.data[1] = KDRec{K,D}(t.data[1].parent, k, d) t.data[2] = KDRec{K,D}(t.data[2].parent, k, d) end ## If we have found exactly k in the tree, then we ## replace the data associated with k and return. if exactfound && !allowdups t.data[leafind] = KDRec{K,D}(parent, k,d) return false, leafind end # We get here if k was not already found in the tree or # if duplicates are allowed. # In this case we insert a new node. depth = t.depth ord = t.ord ## Store the new data item in the tree's data array. Later ## go back and fix the parent. newind = push_or_reuse!(t.data, t.freedatainds, KDRec{K,D}(0,k,d)) push!(t.useddatacells, newind) p1 = parent newchild = newind minkeynewchild = k splitroot = false curdepth = depth existingchild = leafind ## This loop ascends the tree (i.e., follows the path from a leaf to the root) ## starting from the parent p1 of ## where the new key k will go. ## Variables updated by the loop: ## p1: parent of where the new node goes ## newchild: index of the child to be inserted ## minkeynewchild: the minimum key in the subtree rooted at newchild ## existingchild: a child of p1; the newchild must ## be inserted in the slot to the right of existingchild ## curdepth: depth of newchild ## For each 3-node we encounter ## during the ascent, we add a new child, which requires splitting ## the 3-node into two 2-nodes. Then we keep going until we hit the root. ## If we encounter a 2-node, then the ascent can stop; we can ## change the 2-node to a 3-node with the new child. while true # Let newchild1,...newchild4 be the new children of # the parent node # Initially, take the three children of the existing parent # node and set newchild4 to 0. newchild1 = t.tree[p1].child1 newchild2 = t.tree[p1].child2 minkeychild2 = t.tree[p1].splitkey1 newchild3 = t.tree[p1].child3 minkeychild3 = t.tree[p1].splitkey2 p1parent = t.tree[p1].parent newchild4 = 0 # Now figure out which of the 4 children is the new node # and insert it into newchild1 ... newchild4 if newchild1 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild2 minkeychild3 = minkeychild2 newchild2 = newchild minkeychild2 = minkeynewchild elseif newchild2 == existingchild newchild4 = newchild3 minkeychild4 = minkeychild3 newchild3 = newchild minkeychild3 = minkeynewchild elseif newchild3 == existingchild newchild4 = newchild minkeychild4 = minkeynewchild else throw(AssertionError("Tree structure is corrupted 1")) end # Two cases: either we need to split the tree node # if newchild4>0 else we convert a 2-node to a 3-node # if newchild4==0 if newchild4 == 0 # Change the parent from a 2-node to a 3-node t.tree[p1] = TreeNode{K}(newchild1, newchild2, newchild3, p1parent, minkeychild2, minkeychild3) if curdepth == depth replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth replaceparent!(t.data, newchild2, p1) replaceparent!(t.data, newchild3, newparentnum) replaceparent!(t.data, newchild4, newparentnum) else replaceparent!(t.tree, newchild2, p1) replaceparent!(t.tree, newchild3, newparentnum) replaceparent!(t.tree, newchild4, newparentnum) end # Update the loop variables for the next level of the # ascension existingchild = p1 newchild = newparentnum p1 = p1parent minkeynewchild = minkeychild3 curdepth -= 1 if curdepth == 0 splitroot = true break end end # If the root has been split, then we need to add a level # to the tree that is the parent of the old root and the new node. if splitroot @invariant existingchild == t.rootloc newroot = TreeNode{K}(existingchild, newchild, 0, 0, minkeynewchild, minkeynewchild) newrootloc = push_or_reuse!(t.tree, t.freetreeinds, newroot) replaceparent!(t.tree, existingchild, newrootloc) replaceparent!(t.tree, newchild, newrootloc) t.rootloc = newrootloc t.depth += 1 end return true, newind end
size
358
520
src/balanced_tree.jl
#FILE: DataStructures.jl/src/red_black_tree.jl ##CHUNK 1 function Base.insert!(tree::RBTree{K}, d::K) where K # if the key exists in the tree, no need to insert haskey(tree, d) && return tree # insert, if not present in the tree node = RBTreeNode{K}(d) node.leftChild = node.rightChild = tree.nil insert_node!(tree, node) if node.parent == nothing node.color = false elseif node.parent.parent == nothing ; else fix_insert!(tree, node) end tree.count += 1 return tree end ##CHUNK 2 end end tree.root.color = false end """ insert!(tree, key) Inserts `key` in the `tree` if it is not present. """ function Base.insert!(tree::RBTree{K}, d::K) where K # if the key exists in the tree, no need to insert haskey(tree, d) && return tree # insert, if not present in the tree node = RBTreeNode{K}(d) node.leftChild = node.rightChild = tree.nil insert_node!(tree, node) #CURRENT FILE: DataStructures.jl/src/balanced_tree.jl ##CHUNK 1 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end ## The following are helper routines for the insert! and delete! functions. ## They replace the 'parent' field of either an internal tree node or ## a data node at the bottom tree level. function replaceparent!(data::Vector{KDRec{K,D}}, whichind::Int, newparent::Int) where {K,D} data[whichind] = KDRec{K,D}(newparent, data[whichind].k, data[whichind].d) return nothing end ##CHUNK 2 if c3 != it && c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.data[c3].k end @invariant newchildcount == 1 || newchildcount == 2 push!(t.freedatainds, it) pop!(t.useddatacells,it) defaultKey = t.tree[1].splitkey1 curdepth = t.depth mustdeleteroot = false pparent = -1 ## The following loop ascends the tree and contracts nodes (reduces their ## number of children) as ## needed. If newchildcount == 2 or 3, then the ascent is terminated ## and a node is created with 2 or 3 children. ## If newchildcount == 1, then the ascent must continue since a tree ## node cannot have one child. ##CHUNK 3 end # Build a balanced tree from an iterable in which the data is already # sorted function BalancedTree23{K,D,Ord}(::Val{true}, iterable, ord::Ord, allowdups::Bool) where {K, D, Ord <: Ordering} m = BalancedTree23{K,D,Ord}(ord) lengthdata = length(m.data) @assert lengthdata == 2 firsttrip = true for (k,d) in iterable # Must initialize the before-start and past-end markers # with live data to prevent references to undefined fields # later if firsttrip m.data[1] = KDRec{K,D}(m.data[1].parent, k, d) m.data[2] = KDRec{K,D}(m.data[2].parent, k, d) ##CHUNK 4 lengthdata = length(m.data) @assert lengthdata == 2 firsttrip = true for (k,d) in iterable # Must initialize the before-start and past-end markers # with live data to prevent references to undefined fields # later if firsttrip m.data[1] = KDRec{K,D}(m.data[1].parent, k, d) m.data[2] = KDRec{K,D}(m.data[2].parent, k, d) end if !firsttrip lt(ord, k, m.data[lengthdata].k) && throw(ArgumentError("Keys out of order")) if !allowdups !lt(ord, m.data[lengthdata].k, k) && throw(ArgumentError("Repeated key")) end end push!(m.data, KDRec{K,D}(0, convert(K,k), convert(D,d))) ##CHUNK 5 mutable struct BalancedTree23{K, D, Ord <: Ordering} ord::Ord data::Vector{KDRec{K,D}} tree::Vector{TreeNode{K}} rootloc::Int depth::Int freetreeinds::Vector{Int} freedatainds::Vector{Int} useddatacells::BitSet # The next two arrays are used as a workspace by the delete! # function. deletionchild::Vector{Int} deletionleftkey::Vector{K} function BalancedTree23{K,D,Ord}(ord1::Ord) where {K,D,Ord<:Ordering} tree1 = Vector{TreeNode{K}}(undef, 1) initializeTree!(tree1) data1 = Vector{KDRec{K,D}}(undef, 2) initializeData!(data1) u1 = BitSet() push!(u1, 1, 2) ##CHUNK 6 function Base.delete!(t::BalancedTree23{K,D,Ord}, it::Int) where {K,D,Ord<:Ordering} ## Put the cell indexed by 'it' into the deletion list. ## ## Create the following data items maintained in the ## upcoming loop. ## ## p is a tree-node ancestor of the deleted node ## The children of p are stored in ## t.deletionchild[..] ## The number of these children is newchildcount, which is 1, 2 or 3. ## The keys that lower bound the children ## are stored in t.deletionleftkey[..] ## There is a special case for t.deletionleftkey[1]; the ## flag deletionleftkey1_valid indicates that the left key ## for the immediate right neighbor of the ## deleted node has not yet been been stored in the tree. ## Once it is stored, t.deletionleftkey[1] is no longer needed ## or used. ##CHUNK 7 # function. deletionchild::Vector{Int} deletionleftkey::Vector{K} function BalancedTree23{K,D,Ord}(ord1::Ord) where {K,D,Ord<:Ordering} tree1 = Vector{TreeNode{K}}(undef, 1) initializeTree!(tree1) data1 = Vector{KDRec{K,D}}(undef, 2) initializeData!(data1) u1 = BitSet() push!(u1, 1, 2) new{K,D,Ord}(ord1, data1, tree1, 1, 1, Vector{Int}(), Vector{Int}(), u1, Vector{Int}(undef, 3), Vector{K}(undef, 3)) end end ## Function cmp2 checks a tree node with two children ## against a given key, and returns 1 if the given key is ## less than the node's splitkey or 2 else. Special case ##CHUNK 8 ## The first and second entries of the data array are dummy placeholders ## for the beginning and end of the sorted order of the keys ## tree: the nodes of a 2-3 tree that sits above the data. ## rootloc: the index of the entry of tree (i.e., a subscript to ## treenodes) that is the tree's root ## depth: the depth of the tree, (number ## of tree levels, not counting the level of data at the bottom) ## depth==1 means that there is a single root node ## whose children are data nodes. ## freetreeinds: Array of indices of free locations in the ## tree array (locations are freed due to deletion) ## freedatainds: Array of indices of free locations in the ## data array (locations are freed due to deletion) ## useddatacells: BitSet (i.e., bit vector) showing which ## data cells are taken. The complementary positions are ## exactly those stored in freedatainds. This array is ## used only for error checking. ## deletionchild and deletionleftkey are two work-arrays ## for the delete function.
655
984
DataStructures.jl
11
function Base.delete!(t::BalancedTree23{K,D,Ord}, it::Int) where {K,D,Ord<:Ordering} ## Put the cell indexed by 'it' into the deletion list. ## ## Create the following data items maintained in the ## upcoming loop. ## ## p is a tree-node ancestor of the deleted node ## The children of p are stored in ## t.deletionchild[..] ## The number of these children is newchildcount, which is 1, 2 or 3. ## The keys that lower bound the children ## are stored in t.deletionleftkey[..] ## There is a special case for t.deletionleftkey[1]; the ## flag deletionleftkey1_valid indicates that the left key ## for the immediate right neighbor of the ## deleted node has not yet been been stored in the tree. ## Once it is stored, t.deletionleftkey[1] is no longer needed ## or used. ## The flag mustdeleteroot means that the tree has contracted ## enough that it loses a level. p = t.data[it].parent newchildcount = 0 c1 = t.tree[p].child1 deletionleftkey1_valid = true if c1 != it deletionleftkey1_valid = false newchildcount += 1 t.deletionchild[newchildcount] = c1 t.deletionleftkey[newchildcount] = t.data[c1].k end c2 = t.tree[p].child2 if c2 != it newchildcount += 1 t.deletionchild[newchildcount] = c2 t.deletionleftkey[newchildcount] = t.data[c2].k end c3 = t.tree[p].child3 if c3 != it && c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.data[c3].k end @invariant newchildcount == 1 || newchildcount == 2 push!(t.freedatainds, it) pop!(t.useddatacells,it) defaultKey = t.tree[1].splitkey1 curdepth = t.depth mustdeleteroot = false pparent = -1 ## The following loop ascends the tree and contracts nodes (reduces their ## number of children) as ## needed. If newchildcount == 2 or 3, then the ascent is terminated ## and a node is created with 2 or 3 children. ## If newchildcount == 1, then the ascent must continue since a tree ## node cannot have one child. while true pparent = t.tree[p].parent ## Simple cases when the new child count is 2 or 3 if newchildcount == 2 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], 0, pparent, t.deletionleftkey[2], defaultKey) break end if newchildcount == 3 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], t.deletionchild[3], pparent, t.deletionleftkey[2], t.deletionleftkey[3]) break end @invariant newchildcount == 1 ## For the rest of this loop, we cover the case ## that p has one child. ## If newchildcount == 1 and curdepth==1, this means that ## the root of the tree has only one child. In this case, we can ## delete the root and make its one child the new root (see below). if curdepth == 1 mustdeleteroot = true break end ## We now branch on three cases depending on whether p is child1, ## child2 or child3 of its parent. if t.tree[pparent].child1 == p rightsib = t.tree[pparent].child2 ## Here p is child1 and rightsib is child2. ## If rightsib has 2 children, then p and ## rightsib are merged into a single node ## that has three children. ## If rightsib has 3 children, then p and ## rightsib are reformed so that each has ## two children. if t.tree[rightsib].child3 == 0 rc1 = t.tree[rightsib].child1 rc2 = t.tree[rightsib].child2 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, rc2, pparent, t.tree[pparent].splitkey1, t.tree[rightsib].splitkey1) if curdepth == t.depth replaceparent!(t.data, rc1, p) replaceparent!(t.data, rc2, p) else replaceparent!(t.tree, rc1, p) replaceparent!(t.tree, rc2, p) end push!(t.freetreeinds, rightsib) newchildcount = 1 t.deletionchild[1] = p else rc1 = t.tree[rightsib].child1 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, 0, pparent, t.tree[pparent].splitkey1, defaultKey) sk1 = t.tree[rightsib].splitkey1 t.tree[rightsib] = TreeNode{K}(t.tree[rightsib].child2, t.tree[rightsib].child3, 0, pparent, t.tree[rightsib].splitkey2, defaultKey) if curdepth == t.depth replaceparent!(t.data, rc1, p) else replaceparent!(t.tree, rc1, p) end newchildcount = 2 t.deletionchild[1] = p t.deletionchild[2] = rightsib t.deletionleftkey[2] = sk1 end ## If pparent had a third child (besides p and rightsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent elseif t.tree[pparent].child2 == p ## Here p is child2 and leftsib is child1. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. leftsib = t.tree[pparent].child1 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey1 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 1 t.deletionchild[1] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 2 t.deletionchild[1] = leftsib t.deletionchild[2] = p t.deletionleftkey[2] = sk2 end ## If pparent had a third child (besides p and leftsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent deletionleftkey1_valid = false else ## Here p is child3 and leftsib is child2. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. @invariant t.tree[pparent].child3 == p leftsib = t.tree[pparent].child2 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey2 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 2 t.deletionchild[1] = t.tree[pparent].child1 t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionchild[2] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 3 t.deletionchild[1] = t.tree[pparent].child1 t.deletionchild[2] = leftsib t.deletionchild[3] = p t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionleftkey[3] = sk2 end p = pparent deletionleftkey1_valid = false end curdepth -= 1 end if mustdeleteroot @invariant !deletionleftkey1_valid @invariant p == t.rootloc t.rootloc = t.deletionchild[1] t.depth -= 1 push!(t.freetreeinds, p) end ## If deletionleftkey1_valid, this means that the new ## min key of the deleted node and its right neighbors ## has never been stored in the tree. It must be stored ## as splitkey1 or splitkey2 of some ancestor of the ## deleted node, so we continue ascending the tree ## until we find a node which has p (and therefore the ## deleted node) as its descendent through its second ## or third child. ## It cannot be the case that the deleted node is ## is a descendent of the root always through ## first children, since this would mean the deleted ## node is the leftmost placeholder, which ## cannot be deleted. if deletionleftkey1_valid while true pparentnode = t.tree[pparent] if pparentnode.child2 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, t.deletionleftkey[1], pparentnode.splitkey2) break elseif pparentnode.child3 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, pparentnode.splitkey1, t.deletionleftkey[1]) break else p = pparent pparent = pparentnode.parent curdepth -= 1 @invariant curdepth > 0 end end end return nothing end
function Base.delete!(t::BalancedTree23{K,D,Ord}, it::Int) where {K,D,Ord<:Ordering} ## Put the cell indexed by 'it' into the deletion list. ## ## Create the following data items maintained in the ## upcoming loop. ## ## p is a tree-node ancestor of the deleted node ## The children of p are stored in ## t.deletionchild[..] ## The number of these children is newchildcount, which is 1, 2 or 3. ## The keys that lower bound the children ## are stored in t.deletionleftkey[..] ## There is a special case for t.deletionleftkey[1]; the ## flag deletionleftkey1_valid indicates that the left key ## for the immediate right neighbor of the ## deleted node has not yet been been stored in the tree. ## Once it is stored, t.deletionleftkey[1] is no longer needed ## or used. ## The flag mustdeleteroot means that the tree has contracted ## enough that it loses a level. p = t.data[it].parent newchildcount = 0 c1 = t.tree[p].child1 deletionleftkey1_valid = true if c1 != it deletionleftkey1_valid = false newchildcount += 1 t.deletionchild[newchildcount] = c1 t.deletionleftkey[newchildcount] = t.data[c1].k end c2 = t.tree[p].child2 if c2 != it newchildcount += 1 t.deletionchild[newchildcount] = c2 t.deletionleftkey[newchildcount] = t.data[c2].k end c3 = t.tree[p].child3 if c3 != it && c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.data[c3].k end @invariant newchildcount == 1 || newchildcount == 2 push!(t.freedatainds, it) pop!(t.useddatacells,it) defaultKey = t.tree[1].splitkey1 curdepth = t.depth mustdeleteroot = false pparent = -1 ## The following loop ascends the tree and contracts nodes (reduces their ## number of children) as ## needed. If newchildcount == 2 or 3, then the ascent is terminated ## and a node is created with 2 or 3 children. ## If newchildcount == 1, then the ascent must continue since a tree ## node cannot have one child. while true pparent = t.tree[p].parent ## Simple cases when the new child count is 2 or 3 if newchildcount == 2 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], 0, pparent, t.deletionleftkey[2], defaultKey) break end if newchildcount == 3 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], t.deletionchild[3], pparent, t.deletionleftkey[2], t.deletionleftkey[3]) break end @invariant newchildcount == 1 ## For the rest of this loop, we cover the case ## that p has one child. ## If newchildcount == 1 and curdepth==1, this means that ## the root of the tree has only one child. In this case, we can ## delete the root and make its one child the new root (see below). if curdepth == 1 mustdeleteroot = true break end ## We now branch on three cases depending on whether p is child1, ## child2 or child3 of its parent. if t.tree[pparent].child1 == p rightsib = t.tree[pparent].child2 ## Here p is child1 and rightsib is child2. ## If rightsib has 2 children, then p and ## rightsib are merged into a single node ## that has three children. ## If rightsib has 3 children, then p and ## rightsib are reformed so that each has ## two children. if t.tree[rightsib].child3 == 0 rc1 = t.tree[rightsib].child1 rc2 = t.tree[rightsib].child2 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, rc2, pparent, t.tree[pparent].splitkey1, t.tree[rightsib].splitkey1) if curdepth == t.depth replaceparent!(t.data, rc1, p) replaceparent!(t.data, rc2, p) else replaceparent!(t.tree, rc1, p) replaceparent!(t.tree, rc2, p) end push!(t.freetreeinds, rightsib) newchildcount = 1 t.deletionchild[1] = p else rc1 = t.tree[rightsib].child1 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, 0, pparent, t.tree[pparent].splitkey1, defaultKey) sk1 = t.tree[rightsib].splitkey1 t.tree[rightsib] = TreeNode{K}(t.tree[rightsib].child2, t.tree[rightsib].child3, 0, pparent, t.tree[rightsib].splitkey2, defaultKey) if curdepth == t.depth replaceparent!(t.data, rc1, p) else replaceparent!(t.tree, rc1, p) end newchildcount = 2 t.deletionchild[1] = p t.deletionchild[2] = rightsib t.deletionleftkey[2] = sk1 end ## If pparent had a third child (besides p and rightsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent elseif t.tree[pparent].child2 == p ## Here p is child2 and leftsib is child1. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. leftsib = t.tree[pparent].child1 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey1 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 1 t.deletionchild[1] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 2 t.deletionchild[1] = leftsib t.deletionchild[2] = p t.deletionleftkey[2] = sk2 end ## If pparent had a third child (besides p and leftsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent deletionleftkey1_valid = false else ## Here p is child3 and leftsib is child2. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. @invariant t.tree[pparent].child3 == p leftsib = t.tree[pparent].child2 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey2 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 2 t.deletionchild[1] = t.tree[pparent].child1 t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionchild[2] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 3 t.deletionchild[1] = t.tree[pparent].child1 t.deletionchild[2] = leftsib t.deletionchild[3] = p t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionleftkey[3] = sk2 end p = pparent deletionleftkey1_valid = false end curdepth -= 1 end if mustdeleteroot @invariant !deletionleftkey1_valid @invariant p == t.rootloc t.rootloc = t.deletionchild[1] t.depth -= 1 push!(t.freetreeinds, p) end ## If deletionleftkey1_valid, this means that the new ## min key of the deleted node and its right neighbors ## has never been stored in the tree. It must be stored ## as splitkey1 or splitkey2 of some ancestor of the ## deleted node, so we continue ascending the tree ## until we find a node which has p (and therefore the ## deleted node) as its descendent through its second ## or third child. ## It cannot be the case that the deleted node is ## is a descendent of the root always through ## first children, since this would mean the deleted ## node is the leftmost placeholder, which ## cannot be deleted. if deletionleftkey1_valid while true pparentnode = t.tree[pparent] if pparentnode.child2 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, t.deletionleftkey[1], pparentnode.splitkey2) break elseif pparentnode.child3 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, pparentnode.splitkey1, t.deletionleftkey[1]) break else p = pparent pparent = pparentnode.parent curdepth -= 1 @invariant curdepth > 0 end end end return nothing end
[ 655, 984 ]
function Base.delete!(t::BalancedTree23{K,D,Ord}, it::Int) where {K,D,Ord<:Ordering} ## Put the cell indexed by 'it' into the deletion list. ## ## Create the following data items maintained in the ## upcoming loop. ## ## p is a tree-node ancestor of the deleted node ## The children of p are stored in ## t.deletionchild[..] ## The number of these children is newchildcount, which is 1, 2 or 3. ## The keys that lower bound the children ## are stored in t.deletionleftkey[..] ## There is a special case for t.deletionleftkey[1]; the ## flag deletionleftkey1_valid indicates that the left key ## for the immediate right neighbor of the ## deleted node has not yet been been stored in the tree. ## Once it is stored, t.deletionleftkey[1] is no longer needed ## or used. ## The flag mustdeleteroot means that the tree has contracted ## enough that it loses a level. p = t.data[it].parent newchildcount = 0 c1 = t.tree[p].child1 deletionleftkey1_valid = true if c1 != it deletionleftkey1_valid = false newchildcount += 1 t.deletionchild[newchildcount] = c1 t.deletionleftkey[newchildcount] = t.data[c1].k end c2 = t.tree[p].child2 if c2 != it newchildcount += 1 t.deletionchild[newchildcount] = c2 t.deletionleftkey[newchildcount] = t.data[c2].k end c3 = t.tree[p].child3 if c3 != it && c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.data[c3].k end @invariant newchildcount == 1 || newchildcount == 2 push!(t.freedatainds, it) pop!(t.useddatacells,it) defaultKey = t.tree[1].splitkey1 curdepth = t.depth mustdeleteroot = false pparent = -1 ## The following loop ascends the tree and contracts nodes (reduces their ## number of children) as ## needed. If newchildcount == 2 or 3, then the ascent is terminated ## and a node is created with 2 or 3 children. ## If newchildcount == 1, then the ascent must continue since a tree ## node cannot have one child. while true pparent = t.tree[p].parent ## Simple cases when the new child count is 2 or 3 if newchildcount == 2 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], 0, pparent, t.deletionleftkey[2], defaultKey) break end if newchildcount == 3 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], t.deletionchild[3], pparent, t.deletionleftkey[2], t.deletionleftkey[3]) break end @invariant newchildcount == 1 ## For the rest of this loop, we cover the case ## that p has one child. ## If newchildcount == 1 and curdepth==1, this means that ## the root of the tree has only one child. In this case, we can ## delete the root and make its one child the new root (see below). if curdepth == 1 mustdeleteroot = true break end ## We now branch on three cases depending on whether p is child1, ## child2 or child3 of its parent. if t.tree[pparent].child1 == p rightsib = t.tree[pparent].child2 ## Here p is child1 and rightsib is child2. ## If rightsib has 2 children, then p and ## rightsib are merged into a single node ## that has three children. ## If rightsib has 3 children, then p and ## rightsib are reformed so that each has ## two children. if t.tree[rightsib].child3 == 0 rc1 = t.tree[rightsib].child1 rc2 = t.tree[rightsib].child2 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, rc2, pparent, t.tree[pparent].splitkey1, t.tree[rightsib].splitkey1) if curdepth == t.depth replaceparent!(t.data, rc1, p) replaceparent!(t.data, rc2, p) else replaceparent!(t.tree, rc1, p) replaceparent!(t.tree, rc2, p) end push!(t.freetreeinds, rightsib) newchildcount = 1 t.deletionchild[1] = p else rc1 = t.tree[rightsib].child1 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, 0, pparent, t.tree[pparent].splitkey1, defaultKey) sk1 = t.tree[rightsib].splitkey1 t.tree[rightsib] = TreeNode{K}(t.tree[rightsib].child2, t.tree[rightsib].child3, 0, pparent, t.tree[rightsib].splitkey2, defaultKey) if curdepth == t.depth replaceparent!(t.data, rc1, p) else replaceparent!(t.tree, rc1, p) end newchildcount = 2 t.deletionchild[1] = p t.deletionchild[2] = rightsib t.deletionleftkey[2] = sk1 end ## If pparent had a third child (besides p and rightsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent elseif t.tree[pparent].child2 == p ## Here p is child2 and leftsib is child1. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. leftsib = t.tree[pparent].child1 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey1 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 1 t.deletionchild[1] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 2 t.deletionchild[1] = leftsib t.deletionchild[2] = p t.deletionleftkey[2] = sk2 end ## If pparent had a third child (besides p and leftsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent deletionleftkey1_valid = false else ## Here p is child3 and leftsib is child2. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. @invariant t.tree[pparent].child3 == p leftsib = t.tree[pparent].child2 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey2 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 2 t.deletionchild[1] = t.tree[pparent].child1 t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionchild[2] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 3 t.deletionchild[1] = t.tree[pparent].child1 t.deletionchild[2] = leftsib t.deletionchild[3] = p t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionleftkey[3] = sk2 end p = pparent deletionleftkey1_valid = false end curdepth -= 1 end if mustdeleteroot @invariant !deletionleftkey1_valid @invariant p == t.rootloc t.rootloc = t.deletionchild[1] t.depth -= 1 push!(t.freetreeinds, p) end ## If deletionleftkey1_valid, this means that the new ## min key of the deleted node and its right neighbors ## has never been stored in the tree. It must be stored ## as splitkey1 or splitkey2 of some ancestor of the ## deleted node, so we continue ascending the tree ## until we find a node which has p (and therefore the ## deleted node) as its descendent through its second ## or third child. ## It cannot be the case that the deleted node is ## is a descendent of the root always through ## first children, since this would mean the deleted ## node is the leftmost placeholder, which ## cannot be deleted. if deletionleftkey1_valid while true pparentnode = t.tree[pparent] if pparentnode.child2 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, t.deletionleftkey[1], pparentnode.splitkey2) break elseif pparentnode.child3 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, pparentnode.splitkey1, t.deletionleftkey[1]) break else p = pparent pparent = pparentnode.parent curdepth -= 1 @invariant curdepth > 0 end end end return nothing end
function Base.delete!(t::BalancedTree23{K,D,Ord}, it::Int) where {K,D,Ord<:Ordering} ## Put the cell indexed by 'it' into the deletion list. ## ## Create the following data items maintained in the ## upcoming loop. ## ## p is a tree-node ancestor of the deleted node ## The children of p are stored in ## t.deletionchild[..] ## The number of these children is newchildcount, which is 1, 2 or 3. ## The keys that lower bound the children ## are stored in t.deletionleftkey[..] ## There is a special case for t.deletionleftkey[1]; the ## flag deletionleftkey1_valid indicates that the left key ## for the immediate right neighbor of the ## deleted node has not yet been been stored in the tree. ## Once it is stored, t.deletionleftkey[1] is no longer needed ## or used. ## The flag mustdeleteroot means that the tree has contracted ## enough that it loses a level. p = t.data[it].parent newchildcount = 0 c1 = t.tree[p].child1 deletionleftkey1_valid = true if c1 != it deletionleftkey1_valid = false newchildcount += 1 t.deletionchild[newchildcount] = c1 t.deletionleftkey[newchildcount] = t.data[c1].k end c2 = t.tree[p].child2 if c2 != it newchildcount += 1 t.deletionchild[newchildcount] = c2 t.deletionleftkey[newchildcount] = t.data[c2].k end c3 = t.tree[p].child3 if c3 != it && c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.data[c3].k end @invariant newchildcount == 1 || newchildcount == 2 push!(t.freedatainds, it) pop!(t.useddatacells,it) defaultKey = t.tree[1].splitkey1 curdepth = t.depth mustdeleteroot = false pparent = -1 ## The following loop ascends the tree and contracts nodes (reduces their ## number of children) as ## needed. If newchildcount == 2 or 3, then the ascent is terminated ## and a node is created with 2 or 3 children. ## If newchildcount == 1, then the ascent must continue since a tree ## node cannot have one child. while true pparent = t.tree[p].parent ## Simple cases when the new child count is 2 or 3 if newchildcount == 2 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], 0, pparent, t.deletionleftkey[2], defaultKey) break end if newchildcount == 3 t.tree[p] = TreeNode{K}(t.deletionchild[1], t.deletionchild[2], t.deletionchild[3], pparent, t.deletionleftkey[2], t.deletionleftkey[3]) break end @invariant newchildcount == 1 ## For the rest of this loop, we cover the case ## that p has one child. ## If newchildcount == 1 and curdepth==1, this means that ## the root of the tree has only one child. In this case, we can ## delete the root and make its one child the new root (see below). if curdepth == 1 mustdeleteroot = true break end ## We now branch on three cases depending on whether p is child1, ## child2 or child3 of its parent. if t.tree[pparent].child1 == p rightsib = t.tree[pparent].child2 ## Here p is child1 and rightsib is child2. ## If rightsib has 2 children, then p and ## rightsib are merged into a single node ## that has three children. ## If rightsib has 3 children, then p and ## rightsib are reformed so that each has ## two children. if t.tree[rightsib].child3 == 0 rc1 = t.tree[rightsib].child1 rc2 = t.tree[rightsib].child2 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, rc2, pparent, t.tree[pparent].splitkey1, t.tree[rightsib].splitkey1) if curdepth == t.depth replaceparent!(t.data, rc1, p) replaceparent!(t.data, rc2, p) else replaceparent!(t.tree, rc1, p) replaceparent!(t.tree, rc2, p) end push!(t.freetreeinds, rightsib) newchildcount = 1 t.deletionchild[1] = p else rc1 = t.tree[rightsib].child1 t.tree[p] = TreeNode{K}(t.deletionchild[1], rc1, 0, pparent, t.tree[pparent].splitkey1, defaultKey) sk1 = t.tree[rightsib].splitkey1 t.tree[rightsib] = TreeNode{K}(t.tree[rightsib].child2, t.tree[rightsib].child3, 0, pparent, t.tree[rightsib].splitkey2, defaultKey) if curdepth == t.depth replaceparent!(t.data, rc1, p) else replaceparent!(t.tree, rc1, p) end newchildcount = 2 t.deletionchild[1] = p t.deletionchild[2] = rightsib t.deletionleftkey[2] = sk1 end ## If pparent had a third child (besides p and rightsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent elseif t.tree[pparent].child2 == p ## Here p is child2 and leftsib is child1. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. leftsib = t.tree[pparent].child1 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey1 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 1 t.deletionchild[1] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 2 t.deletionchild[1] = leftsib t.deletionchild[2] = p t.deletionleftkey[2] = sk2 end ## If pparent had a third child (besides p and leftsib) ## then we add this to t.deletionchild c3 = t.tree[pparent].child3 if c3 > 0 newchildcount += 1 t.deletionchild[newchildcount] = c3 t.deletionleftkey[newchildcount] = t.tree[pparent].splitkey2 end p = pparent deletionleftkey1_valid = false else ## Here p is child3 and leftsib is child2. ## If leftsib has 2 children, then p and ## leftsib are merged into a single node ## that has three children. ## If leftsib has 3 children, then p and ## leftsib are reformed so that each has ## two children. @invariant t.tree[pparent].child3 == p leftsib = t.tree[pparent].child2 lk = deletionleftkey1_valid ? t.deletionleftkey[1] : t.tree[pparent].splitkey2 if t.tree[leftsib].child3 == 0 lc1 = t.tree[leftsib].child1 lc2 = t.tree[leftsib].child2 t.tree[p] = TreeNode{K}(lc1, lc2, t.deletionchild[1], pparent, t.tree[leftsib].splitkey1, lk) if curdepth == t.depth replaceparent!(t.data, lc1, p) replaceparent!(t.data, lc2, p) else replaceparent!(t.tree, lc1, p) replaceparent!(t.tree, lc2, p) end push!(t.freetreeinds, leftsib) newchildcount = 2 t.deletionchild[1] = t.tree[pparent].child1 t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionchild[2] = p else lc3 = t.tree[leftsib].child3 t.tree[p] = TreeNode{K}(lc3, t.deletionchild[1], 0, pparent, lk, defaultKey) sk2 = t.tree[leftsib].splitkey2 t.tree[leftsib] = TreeNode{K}(t.tree[leftsib].child1, t.tree[leftsib].child2, 0, pparent, t.tree[leftsib].splitkey1, defaultKey) if curdepth == t.depth replaceparent!(t.data, lc3, p) else replaceparent!(t.tree, lc3, p) end newchildcount = 3 t.deletionchild[1] = t.tree[pparent].child1 t.deletionchild[2] = leftsib t.deletionchild[3] = p t.deletionleftkey[2] = t.tree[pparent].splitkey1 t.deletionleftkey[3] = sk2 end p = pparent deletionleftkey1_valid = false end curdepth -= 1 end if mustdeleteroot @invariant !deletionleftkey1_valid @invariant p == t.rootloc t.rootloc = t.deletionchild[1] t.depth -= 1 push!(t.freetreeinds, p) end ## If deletionleftkey1_valid, this means that the new ## min key of the deleted node and its right neighbors ## has never been stored in the tree. It must be stored ## as splitkey1 or splitkey2 of some ancestor of the ## deleted node, so we continue ascending the tree ## until we find a node which has p (and therefore the ## deleted node) as its descendent through its second ## or third child. ## It cannot be the case that the deleted node is ## is a descendent of the root always through ## first children, since this would mean the deleted ## node is the leftmost placeholder, which ## cannot be deleted. if deletionleftkey1_valid while true pparentnode = t.tree[pparent] if pparentnode.child2 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, t.deletionleftkey[1], pparentnode.splitkey2) break elseif pparentnode.child3 == p t.tree[pparent] = TreeNode{K}(pparentnode.child1, pparentnode.child2, pparentnode.child3, pparentnode.parent, pparentnode.splitkey1, t.deletionleftkey[1]) break else p = pparent pparent = pparentnode.parent curdepth -= 1 @invariant curdepth > 0 end end end return nothing end
Base.delete!
655
984
src/balanced_tree.jl
#CURRENT FILE: DataStructures.jl/src/balanced_tree.jl ##CHUNK 1 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end ## The following are helper routines for the insert! and delete! functions. ## They replace the 'parent' field of either an internal tree node or ## a data node at the bottom tree level. function replaceparent!(data::Vector{KDRec{K,D}}, whichind::Int, newparent::Int) where {K,D} data[whichind] = KDRec{K,D}(newparent, data[whichind].k, data[whichind].d) return nothing end ##CHUNK 2 leafind, exactfound = findkey(t, k) parent = t.data[leafind].parent ## The following code is necessary because in the case of a ## brand new tree, the initial tree and data entries were incompletely ## initialized by the constructor. In this case, the call to insert! ## underway carries ## valid K and D values, so these valid values may now be ## stored in the dummy placeholder nodes so that they no ## longer hold undefined references. if size(t.data,1) == 2 @invariant t.rootloc == 1 && t.depth == 1 t.tree[1] = TreeNode{K}(t.tree[1].child1, t.tree[1].child2, t.tree[1].child3, t.tree[1].parent, k, k) t.data[1] = KDRec{K,D}(t.data[1].parent, k, d) t.data[2] = KDRec{K,D}(t.data[2].parent, k, d) end ##CHUNK 3 if size(t.data,1) == 2 @invariant t.rootloc == 1 && t.depth == 1 t.tree[1] = TreeNode{K}(t.tree[1].child1, t.tree[1].child2, t.tree[1].child3, t.tree[1].parent, k, k) t.data[1] = KDRec{K,D}(t.data[1].parent, k, d) t.data[2] = KDRec{K,D}(t.data[2].parent, k, d) end ## If we have found exactly k in the tree, then we ## replace the data associated with k and return. if exactfound && !allowdups t.data[leafind] = KDRec{K,D}(parent, k,d) return false, leafind end # We get here if k was not already found in the tree or # if duplicates are allowed. ##CHUNK 4 break end end # If the root has been split, then we need to add a level # to the tree that is the parent of the old root and the new node. if splitroot @invariant existingchild == t.rootloc newroot = TreeNode{K}(existingchild, newchild, 0, 0, minkeynewchild, minkeynewchild) newrootloc = push_or_reuse!(t.tree, t.freetreeinds, newroot) replaceparent!(t.tree, existingchild, newrootloc) replaceparent!(t.tree, newchild, newrootloc) t.rootloc = newrootloc t.depth += 1 end return true, newind end ##CHUNK 5 function findkeyless(t::BalancedTree23, k) curnode = t.rootloc for depthcount = 1 : t.depth - 1 @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_nonleaf(t.ord, thisnode, k) : cmp3le_nonleaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 end @inbounds thisnode = t.tree[curnode] cmp = thisnode.child3 == 0 ? cmp2le_leaf(t.ord, thisnode, k) : cmp3le_leaf(t.ord, thisnode, k) curnode = cmp == 1 ? thisnode.child1 : cmp == 2 ? thisnode.child2 : thisnode.child3 return curnode end ##CHUNK 6 # Two cases: either we need to split the tree node # if newchild4>0 else we convert a 2-node to a 3-node # if newchild4==0 if newchild4 == 0 # Change the parent from a 2-node to a 3-node t.tree[p1] = TreeNode{K}(newchild1, newchild2, newchild3, p1parent, minkeychild2, minkeychild3) if curdepth == depth replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, ##CHUNK 7 # In this case we insert a new node. depth = t.depth ord = t.ord ## Store the new data item in the tree's data array. Later ## go back and fix the parent. newind = push_or_reuse!(t.data, t.freedatainds, KDRec{K,D}(0,k,d)) push!(t.useddatacells, newind) p1 = parent newchild = newind minkeynewchild = k splitroot = false curdepth = depth existingchild = leafind ## This loop ascends the tree (i.e., follows the path from a leaf to the root) ## starting from the parent p1 of ## where the new key k will go. ##CHUNK 8 replaceparent!(t.data, newchild, p1) else replaceparent!(t.tree, newchild, p1) end break end # Split the parent t.tree[p1] = TreeNode{K}(newchild1, newchild2, 0, p1parent, minkeychild2, minkeychild2) newtreenode = TreeNode{K}(newchild3, newchild4, 0, p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth replaceparent!(t.data, newchild2, p1) replaceparent!(t.data, newchild3, newparentnum) replaceparent!(t.data, newchild4, newparentnum) else replaceparent!(t.tree, newchild2, p1) replaceparent!(t.tree, newchild3, newparentnum) replaceparent!(t.tree, newchild4, newparentnum) ##CHUNK 9 p1parent, minkeychild4, minkeychild2) newparentnum = push_or_reuse!(t.tree, t.freetreeinds, newtreenode) if curdepth == depth replaceparent!(t.data, newchild2, p1) replaceparent!(t.data, newchild3, newparentnum) replaceparent!(t.data, newchild4, newparentnum) else replaceparent!(t.tree, newchild2, p1) replaceparent!(t.tree, newchild3, newparentnum) replaceparent!(t.tree, newchild4, newparentnum) end # Update the loop variables for the next level of the # ascension existingchild = p1 newchild = newparentnum p1 = p1parent minkeynewchild = minkeychild3 curdepth -= 1 if curdepth == 0 splitroot = true ##CHUNK 10 ## Variables updated by the loop: ## p1: parent of where the new node goes ## newchild: index of the child to be inserted ## minkeynewchild: the minimum key in the subtree rooted at newchild ## existingchild: a child of p1; the newchild must ## be inserted in the slot to the right of existingchild ## curdepth: depth of newchild ## For each 3-node we encounter ## during the ascent, we add a new child, which requires splitting ## the 3-node into two 2-nodes. Then we keep going until we hit the root. ## If we encounter a 2-node, then the ascent can stop; we can ## change the 2-node to a 3-node with the new child. while true # Let newchild1,...newchild4 be the new children of # the parent node # Initially, take the three children of the existing parent # node and set newchild4 to 0.
243
257
DataStructures.jl
12
function Base.resize!(cb::CircularBuffer, n::Integer) if n != capacity(cb) buf_new = Vector{eltype(cb)}(undef, n) len_new = min(length(cb), n) for i in 1:len_new @inbounds buf_new[i] = cb[i] end cb.capacity = n cb.first = 1 cb.length = len_new cb.buffer = buf_new end return cb end
function Base.resize!(cb::CircularBuffer, n::Integer) if n != capacity(cb) buf_new = Vector{eltype(cb)}(undef, n) len_new = min(length(cb), n) for i in 1:len_new @inbounds buf_new[i] = cb[i] end cb.capacity = n cb.first = 1 cb.length = len_new cb.buffer = buf_new end return cb end
[ 243, 257 ]
function Base.resize!(cb::CircularBuffer, n::Integer) if n != capacity(cb) buf_new = Vector{eltype(cb)}(undef, n) len_new = min(length(cb), n) for i in 1:len_new @inbounds buf_new[i] = cb[i] end cb.capacity = n cb.first = 1 cb.length = len_new cb.buffer = buf_new end return cb end
function Base.resize!(cb::CircularBuffer, n::Integer) if n != capacity(cb) buf_new = Vector{eltype(cb)}(undef, n) len_new = min(length(cb), n) for i in 1:len_new @inbounds buf_new[i] = cb[i] end cb.capacity = n cb.first = 1 cb.length = len_new cb.buffer = buf_new end return cb end
Base.resize!
243
257
src/circular_buffer.jl
#FILE: DataStructures.jl/src/circ_deque.jl ##CHUNK 1 Create a double-ended queue of maximum capacity `n`, implemented as a circular buffer. The element type is `T`. """ CircularDeque{T}(n::Int) where {T} = CircularDeque(Vector{T}(undef, n), n, 0, 1, n) CircularDeque{T}(n::Integer) where {T} = CircularDeque(Vector{T}(undef, Int(n)), Int(n), 0, 1, Int(n)) Base.length(D::CircularDeque) = D.n Base.eltype(::Type{CircularDeque{T}}) where {T} = T """ capacity(D::CircularDeque) Return the capacity of the circular deque """ capacity(D::CircularDeque) = D.capacity function Base.empty!(D::CircularDeque) D.n = 0 D.first = 1 D.last = D.capacity #CURRENT FILE: DataStructures.jl/src/circular_buffer.jl ##CHUNK 1 Get the first element of CircularBuffer. """ Base.@propagate_inbounds function Base.first(cb::CircularBuffer) @boundscheck (cb.length == 0) && throw(BoundsError(cb, 1)) return cb.buffer[cb.first] end """ last(cb::CircularBuffer) Get the last element of CircularBuffer. """ Base.@propagate_inbounds function Base.last(cb::CircularBuffer) @boundscheck (cb.length == 0) && throw(BoundsError(cb, 1)) return cb.buffer[_buffer_index(cb, cb.length)] end """ resize!(cb::CircularBuffer, n) Resize CircularBuffer to the maximum capacity of n elements. ##CHUNK 2 """ Base.@propagate_inbounds function Base.last(cb::CircularBuffer) @boundscheck (cb.length == 0) && throw(BoundsError(cb, 1)) return cb.buffer[_buffer_index(cb, cb.length)] end """ resize!(cb::CircularBuffer, n) Resize CircularBuffer to the maximum capacity of n elements. If n is smaller than the current buffer length, the first n elements will be retained. """ ##CHUNK 3 function Base.pushfirst!(cb::CircularBuffer, data) # if full, decrement and overwrite, otherwise pushfirst cb.first = (cb.first == 1 ? cb.capacity : cb.first - 1) if length(cb) < cb.capacity cb.length += 1 end @inbounds cb.buffer[cb.first] = data return cb end """ append!(cb::CircularBuffer, datavec::AbstractVector) Push at most last `capacity` items. """ function Base.append!(cb::CircularBuffer, datavec::AbstractVector) # push at most last `capacity` items n = length(datavec) for i in max(1, n-capacity(cb)+1):n push!(cb, datavec[i]) ##CHUNK 4 function Base.fill!(cb::CircularBuffer, data) for i in 1:capacity(cb)-length(cb) push!(cb, data) end return cb end """ length(cb::CircularBuffer) Return the number of elements currently in the buffer. """ Base.length(cb::CircularBuffer) = cb.length """ size(cb::CircularBuffer) Return a tuple with the size of the buffer. """ Base.size(cb::CircularBuffer) = (length(cb),) ##CHUNK 5 cb.length -= 1 return @inbounds cb.buffer[i] end """ pushfirst!(cb::CircularBuffer, data) Insert one or more items at the beginning of CircularBuffer and overwrite back if full. """ function Base.pushfirst!(cb::CircularBuffer, data) # if full, decrement and overwrite, otherwise pushfirst cb.first = (cb.first == 1 ? cb.capacity : cb.first - 1) if length(cb) < cb.capacity cb.length += 1 end @inbounds cb.buffer[cb.first] = data return cb end ##CHUNK 6 # if full, increment and overwrite, otherwise push if cb.length == cb.capacity cb.first = (cb.first == cb.capacity ? 1 : cb.first + 1) else cb.length += 1 end @inbounds cb.buffer[_buffer_index(cb, cb.length)] = data_converted return cb end """ popfirst!(cb::CircularBuffer) Remove the element from the front of the `CircularBuffer`. """ function Base.popfirst!(cb::CircularBuffer) @boundscheck (cb.length == 0) && throw(ArgumentError("array must be non-empty")) i = cb.first cb.first = (cb.first + 1 > cb.capacity ? 1 : cb.first + 1) ##CHUNK 7 end CircularBuffer(iter) = CircularBuffer{eltype(iter)}(iter) """ empty!(cb::CircularBuffer) Reset the buffer. """ function Base.empty!(cb::CircularBuffer) cb.length = 0 return cb end Base.@propagate_inbounds function _buffer_index_checked(cb::CircularBuffer, i::Int) @boundscheck if i < 1 || i > cb.length throw(BoundsError(cb, i)) end _buffer_index(cb, i) end ##CHUNK 8 end return cb end """ fill!(cb::CircularBuffer, data) Grows the buffer up-to capacity, and fills it entirely. It doesn't overwrite existing elements. """ function Base.fill!(cb::CircularBuffer, data) for i in 1:capacity(cb)-length(cb) push!(cb, data) end return cb end """ length(cb::CircularBuffer) ##CHUNK 9 """ append!(cb::CircularBuffer, datavec::AbstractVector) Push at most last `capacity` items. """ function Base.append!(cb::CircularBuffer, datavec::AbstractVector) # push at most last `capacity` items n = length(datavec) for i in max(1, n-capacity(cb)+1):n push!(cb, datavec[i]) end return cb end """ fill!(cb::CircularBuffer, data) Grows the buffer up-to capacity, and fills it entirely. It doesn't overwrite existing elements. """
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
11