metadata
			language:
  - en
license:
  - apache-2.0
multilinguality:
  - monolingual
pretty_name: WOZ 2.0
size_categories:
  - 1K<n<10K
task_categories:
  - conversational
Dataset Card for WOZ 2.0
- Repository: https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz
 - Paper: https://aclanthology.org/P17-1163.pdf
 - Leaderboard: None
 - Who transforms the dataset: Qi Zhu(zhuq96 at gmail dot com)
 
To use this dataset, you need to install ConvLab-3 platform first. Then you can load the dataset via:
from convlab.util import load_dataset, load_ontology, load_database
dataset = load_dataset('woz')
ontology = load_ontology('woz')
database = load_database('woz')
For more usage please refer to here.
Dataset Summary
Describe the dataset.
How to get the transformed data from original data:
- download 
woz_[train|validate|test]_en.jsonfrom https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz and save towozdir in the current directory. - Run 
python preprocess.pyin the current directory. 
- download 
 Main changes of the transformation:
- domain is set to restaurant.
 - normalize the value of categorical slots in state and dialogue acts.
 belief_statesin WOZ dataset containsrequestintents, which are ignored in processing.- use simple string match to find value spans of non-categorical slots.
 
Annotations:
- User dialogue acts, state
 
Supported Tasks and Leaderboards
NLU, DST, E2E
Languages
English
Data Splits
| split | dialogues | utterances | avg_utt | avg_tokens | avg_domains | cat slot match(state) | cat slot match(goal) | cat slot match(dialogue act) | non-cat slot span(dialogue act) | 
|---|---|---|---|---|---|---|---|---|---|
| train | 600 | 4472 | 7.45 | 11.37 | 1 | 100 | - | 100 | 96.56 | 
| validation | 200 | 1460 | 7.3 | 11.28 | 1 | 100 | - | 100 | 95.52 | 
| test | 400 | 2892 | 7.23 | 11.49 | 1 | 100 | - | 100 | 94.83 | 
| all | 1200 | 8824 | 7.35 | 11.39 | 1 | 100 | - | 100 | 95.83 | 
1 domains: ['restaurant']
- cat slot match: how many values of categorical slots are in the possible values of ontology in percentage.
 - non-cat slot span: how many values of non-categorical slots have span annotation in percentage.
 
Citation
@inproceedings{mrksic-etal-2017-neural,
    title = "Neural Belief Tracker: Data-Driven Dialogue State Tracking",
    author = "Mrk{\v{s}}i{\'c}, Nikola  and
      {\'O} S{\'e}aghdha, Diarmuid  and
      Wen, Tsung-Hsien  and
      Thomson, Blaise  and
      Young, Steve",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P17-1163",
    doi = "10.18653/v1/P17-1163",
    pages = "1777--1788",
}
Licensing Information
Apache License, Version 2.0