Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
trace_idx
int32
0
10k
ciphertext
listlengths
16
16
0
[ 173, 219, 245, 115, 42, 27, 254, 102, 155, 225, 195, 129, 22, 72, 229, 75 ]
1
[ 203, 157, 97, 135, 164, 45, 171, 150, 20, 254, 215, 71, 93, 53, 168, 102 ]
2
[ 26, 199, 31, 212, 109, 122, 234, 246, 142, 134, 156, 165, 73, 80, 15, 226 ]
3
[ 37, 13, 158, 7, 94, 67, 196, 7, 25, 125, 30, 232, 70, 203, 148, 79 ]
4
[ 45, 10, 47, 121, 222, 92, 78, 62, 239, 139, 90, 33, 211, 200, 173, 14 ]
5
[ 3, 129, 80, 55, 183, 43, 231, 50, 223, 38, 68, 37, 147, 146, 151, 169 ]
6
[ 209, 128, 47, 235, 251, 143, 84, 114, 78, 202, 35, 177, 43, 137, 119, 230 ]
7
[ 216, 91, 49, 107, 21, 127, 74, 154, 148, 148, 166, 75, 166, 16, 1, 117 ]
8
[ 64, 104, 242, 239, 123, 158, 180, 163, 236, 191, 142, 237, 190, 110, 10, 34 ]
9
[ 225, 176, 15, 15, 213, 140, 137, 12, 87, 165, 148, 181, 141, 6, 224, 229 ]
10
[ 145, 122, 84, 221, 218, 157, 123, 137, 157, 98, 229, 83, 127, 72, 132, 49 ]
11
[ 147, 161, 226, 151, 120, 112, 227, 167, 223, 50, 127, 232, 234, 231, 30, 252 ]
12
[ 60, 42, 62, 204, 225, 160, 65, 174, 113, 130, 213, 43, 176, 19, 20, 118 ]
13
[ 163, 246, 73, 175, 81, 122, 56, 214, 175, 31, 108, 215, 42, 53, 72, 234 ]
14
[ 30, 170, 137, 116, 26, 240, 133, 111, 236, 31, 107, 0, 93, 138, 233, 172 ]
15
[ 147, 202, 57, 253, 116, 92, 162, 247, 151, 216, 186, 172, 3, 104, 162, 205 ]
16
[ 72, 209, 55, 30, 13, 6, 254, 212, 198, 233, 196, 81, 149, 137, 76, 221 ]
17
[ 37, 188, 87, 51, 240, 251, 111, 56, 68, 165, 229, 0, 23, 250, 101, 14 ]
18
[ 232, 186, 57, 136, 121, 134, 214, 252, 169, 253, 249, 63, 229, 190, 132, 204 ]
19
[ 60, 48, 36, 235, 152, 224, 246, 114, 101, 74, 172, 202, 46, 225, 72, 42 ]
20
[ 115, 111, 19, 149, 235, 84, 243, 111, 146, 85, 163, 236, 41, 175, 15, 25 ]
21
[ 44, 20, 80, 251, 214, 199, 238, 150, 128, 144, 237, 137, 191, 65, 190, 93 ]
22
[ 68, 73, 42, 166, 137, 232, 125, 155, 186, 75, 244, 128, 5, 140, 214, 68 ]
23
[ 178, 106, 120, 32, 105, 123, 206, 223, 140, 57, 128, 53, 56, 241, 249, 145 ]
24
[ 217, 57, 187, 17, 107, 30, 42, 213, 206, 151, 190, 136, 188, 240, 2, 90 ]
25
[ 30, 231, 17, 207, 146, 176, 89, 33, 12, 171, 106, 243, 193, 217, 186, 40 ]
26
[ 3, 190, 210, 32, 41, 166, 208, 74, 246, 206, 75, 24, 222, 142, 12, 250 ]
27
[ 15, 215, 114, 38, 108, 116, 110, 87, 176, 0, 231, 180, 229, 207, 111, 154 ]
28
[ 47, 15, 56, 96, 245, 73, 254, 47, 96, 89, 165, 65, 21, 77, 109, 46 ]
29
[ 57, 45, 108, 154, 189, 187, 127, 194, 252, 86, 198, 179, 94, 10, 114, 10 ]
30
[ 206, 244, 9, 230, 101, 68, 171, 29, 78, 22, 192, 212, 53, 97, 18, 77 ]
31
[ 153, 195, 195, 235, 128, 58, 103, 9, 83, 191, 80, 227, 6, 67, 153, 138 ]
32
[ 192, 132, 156, 138, 174, 124, 111, 206, 50, 66, 24, 5, 226, 1, 176, 134 ]
33
[ 221, 254, 66, 205, 222, 77, 73, 228, 132, 79, 133, 87, 117, 66, 24, 187 ]
34
[ 187, 187, 188, 210, 123, 200, 173, 40, 202, 178, 8, 210, 12, 36, 25, 242 ]
35
[ 240, 70, 114, 60, 15, 166, 129, 7, 181, 103, 99, 227, 181, 250, 156, 91 ]
36
[ 218, 254, 234, 221, 110, 18, 202, 32, 5, 198, 249, 255, 64, 9, 210, 223 ]
37
[ 214, 200, 131, 249, 207, 142, 212, 73, 81, 167, 210, 133, 162, 12, 86, 180 ]
38
[ 207, 186, 193, 145, 30, 227, 232, 19, 242, 1, 117, 90, 34, 104, 108, 39 ]
39
[ 219, 197, 7, 50, 66, 191, 44, 57, 69, 161, 182, 37, 34, 123, 70, 110 ]
40
[ 197, 105, 223, 52, 162, 54, 188, 133, 176, 168, 208, 58, 0, 15, 158, 12 ]
41
[ 117, 225, 12, 238, 85, 85, 88, 65, 23, 51, 217, 251, 164, 179, 236, 161 ]
42
[ 53, 173, 31, 0, 45, 144, 254, 145, 45, 73, 141, 18, 178, 178, 229, 236 ]
43
[ 173, 86, 237, 151, 153, 44, 102, 195, 41, 244, 149, 162, 17, 33, 59, 53 ]
44
[ 248, 33, 10, 66, 130, 20, 32, 220, 177, 223, 130, 91, 223, 67, 6, 149 ]
45
[ 6, 2, 12, 0, 128, 184, 90, 52, 103, 238, 180, 101, 185, 100, 62, 62 ]
46
[ 206, 143, 183, 30, 13, 190, 144, 102, 48, 166, 97, 161, 95, 57, 44, 5 ]
47
[ 234, 78, 7, 0, 158, 231, 105, 235, 107, 20, 152, 31, 159, 4, 210, 138 ]
48
[ 246, 20, 216, 157, 228, 213, 47, 216, 210, 173, 139, 236, 161, 6, 50, 51 ]
49
[ 151, 209, 142, 145, 58, 209, 37, 129, 174, 123, 115, 158, 175, 45, 131, 99 ]
50
[ 244, 107, 163, 159, 20, 156, 89, 30, 137, 51, 222, 177, 2, 194, 180, 61 ]
51
[ 132, 230, 43, 30, 158, 62, 178, 143, 87, 78, 96, 135, 189, 149, 130, 143 ]
52
[ 55, 177, 36, 188, 44, 88, 26, 151, 174, 204, 77, 197, 91, 224, 176, 50 ]
53
[ 154, 132, 70, 185, 164, 246, 26, 187, 161, 251, 15, 198, 181, 108, 185, 21 ]
54
[ 142, 170, 7, 77, 199, 247, 152, 49, 5, 94, 126, 84, 77, 87, 203, 23 ]
55
[ 235, 169, 174, 177, 192, 20, 249, 194, 240, 198, 176, 5, 108, 152, 111, 174 ]
56
[ 56, 128, 187, 136, 124, 2, 74, 116, 225, 85, 62, 130, 151, 166, 109, 139 ]
57
[ 206, 34, 101, 41, 112, 118, 149, 26, 154, 10, 61, 23, 120, 181, 145, 135 ]
58
[ 59, 104, 101, 155, 235, 4, 58, 114, 29, 228, 74, 123, 53, 184, 130, 169 ]
59
[ 75, 119, 95, 229, 229, 222, 155, 247, 63, 164, 8, 203, 96, 30, 247, 39 ]
60
[ 40, 78, 19, 6, 45, 59, 109, 73, 100, 135, 92, 19, 176, 90, 155, 119 ]
61
[ 112, 116, 248, 64, 103, 73, 144, 40, 86, 1, 86, 246, 233, 24, 11, 193 ]
62
[ 165, 174, 39, 157, 170, 42, 52, 184, 165, 3, 24, 228, 97, 232, 195, 163 ]
63
[ 27, 91, 63, 33, 188, 12, 57, 222, 124, 41, 184, 117, 119, 109, 255, 29 ]
64
[ 86, 250, 80, 158, 62, 57, 50, 134, 61, 173, 137, 34, 85, 60, 80, 77 ]
65
[ 171, 139, 50, 87, 5, 147, 40, 12, 250, 178, 38, 111, 136, 45, 111, 39 ]
66
[ 24, 8, 207, 79, 187, 67, 31, 52, 248, 48, 49, 34, 42, 93, 133, 97 ]
67
[ 51, 6, 56, 63, 243, 214, 0, 37, 245, 130, 17, 23, 24, 62, 161, 41 ]
68
[ 110, 147, 54, 221, 131, 47, 220, 3, 49, 188, 92, 234, 99, 172, 130, 87 ]
69
[ 198, 159, 1, 45, 216, 91, 217, 27, 79, 21, 140, 102, 124, 61, 185, 217 ]
70
[ 171, 203, 214, 88, 243, 66, 8, 77, 100, 184, 16, 203, 141, 180, 244, 155 ]
71
[ 1, 148, 179, 213, 139, 213, 56, 253, 56, 46, 68, 186, 175, 100, 22, 201 ]
72
[ 84, 141, 236, 199, 64, 30, 249, 45, 148, 17, 188, 198, 106, 115, 238, 235 ]
73
[ 72, 247, 25, 187, 228, 176, 185, 133, 27, 42, 185, 227, 199, 231, 27, 66 ]
74
[ 225, 183, 221, 79, 20, 35, 242, 36, 222, 58, 230, 215, 53, 103, 14, 63 ]
75
[ 143, 129, 71, 136, 220, 111, 60, 62, 142, 80, 68, 79, 58, 161, 176, 111 ]
76
[ 137, 181, 97, 163, 244, 13, 215, 68, 85, 104, 171, 132, 212, 41, 246, 109 ]
77
[ 193, 221, 58, 60, 198, 155, 253, 87, 233, 4, 237, 211, 241, 75, 46, 158 ]
78
[ 133, 72, 30, 234, 250, 76, 241, 56, 85, 205, 76, 132, 58, 175, 22, 212 ]
79
[ 214, 252, 134, 173, 115, 252, 124, 221, 143, 15, 170, 231, 187, 113, 113, 198 ]
80
[ 239, 81, 165, 160, 163, 7, 158, 181, 241, 210, 245, 173, 193, 252, 131, 77 ]
81
[ 63, 44, 225, 36, 131, 247, 121, 113, 176, 249, 243, 8, 218, 200, 185, 50 ]
82
[ 228, 27, 205, 187, 10, 118, 206, 96, 123, 107, 161, 15, 26, 3, 174, 124 ]
83
[ 177, 97, 41, 11, 156, 237, 17, 18, 148, 244, 223, 49, 89, 161, 219, 164 ]
84
[ 82, 209, 115, 183, 77, 144, 42, 204, 68, 26, 66, 79, 119, 156, 0, 40 ]
85
[ 24, 56, 212, 24, 116, 205, 42, 69, 180, 187, 1, 8, 51, 50, 247, 253 ]
86
[ 44, 24, 49, 114, 26, 40, 154, 136, 37, 101, 11, 196, 144, 11, 65, 239 ]
87
[ 73, 244, 214, 229, 79, 100, 157, 194, 152, 1, 236, 227, 207, 46, 249, 235 ]
88
[ 230, 231, 24, 79, 52, 63, 139, 111, 198, 79, 24, 137, 133, 138, 188, 16 ]
89
[ 20, 29, 54, 53, 154, 171, 19, 96, 62, 255, 141, 114, 223, 252, 98, 218 ]
90
[ 66, 238, 5, 42, 22, 231, 11, 5, 58, 201, 234, 251, 228, 91, 242, 187 ]
91
[ 173, 148, 255, 145, 68, 181, 163, 114, 100, 40, 93, 170, 33, 84, 188, 9 ]
92
[ 223, 189, 173, 72, 135, 182, 229, 195, 133, 152, 199, 124, 203, 157, 206, 167 ]
93
[ 46, 92, 210, 172, 10, 98, 70, 95, 185, 203, 66, 3, 126, 66, 20, 33 ]
94
[ 83, 193, 240, 62, 193, 254, 123, 187, 93, 58, 122, 39, 93, 59, 157, 196 ]
95
[ 208, 157, 180, 194, 233, 26, 149, 104, 83, 1, 186, 80, 250, 101, 227, 11 ]
96
[ 59, 72, 128, 73, 43, 183, 151, 109, 38, 237, 43, 230, 187, 206, 230, 131 ]
97
[ 202, 144, 39, 26, 157, 222, 203, 76, 92, 35, 96, 29, 246, 127, 199, 87 ]
98
[ 239, 173, 124, 108, 20, 13, 215, 219, 21, 18, 75, 126, 161, 160, 35, 34 ]
99
[ 228, 205, 2, 174, 234, 8, 128, 67, 63, 182, 238, 233, 247, 186, 194, 50 ]
End of preview. Expand in Data Studio

dataset1

Dataset Description

This is a synthetic side-channel analysis (SCA) dataset containing power consumption traces captured during AES-128 encryption operations. The dataset is structured similar to the ASCAD format and designed for deep learning-based side-channel attacks.

Dataset Details

  • Number of Traces: 10,000
  • Trace Length: 5,000 samples per trace
  • Encryption Algorithm: AES-128
  • Block Size: 16 bytes
  • Data Type: Synthetic/Simulated Data
  • Storage Format: Parquet (columnar, compressed with Snappy)
  • Trace Chunk Size: 1000 traces per file
  • Number of Trace Chunks: 10
  • Total Dataset Size: ~191.0 MB (uncompressed)

What This Dataset Contains

This dataset captures the power consumption during 10,000 AES-128 encryption operations:

  1. Power Traces (Large, Chunked Files):

    • Files: data-traces-00000-of-00010.parquet through data-traces-00009-of-00010.parquet
    • Each trace represents the power consumption measured during one AES encryption
    • 5,000 samples per trace (time-series data)
    • Stored as int32 arrays (will be converted to float during analysis)
    • Chunked for resilience: If download/upload fails, only failed chunks need to be retried
  2. Plaintext Metadata (Single Small File):

    • File: data-plaintexts.parquet (~156.2 KB)
    • Contains the 16-byte input data for each AES encryption
    • Each plaintext is an array of 16 integers (0-255)
    • Linked to traces via trace_idx column
  3. Ciphertext Metadata (Single Small File):

    • File: data-ciphertexts.parquet (~156.2 KB)
    • Contains the 16-byte encrypted output for each AES encryption
    • Each ciphertext is an array of 16 integers (0-255)
    • Linked to traces via trace_idx column

Data Schema

Trace Files (data-traces-*-of-*.parquet):

Column Type Description
trace_idx int Unique index (0 to 9999) linking to metadata
trace list[int32] Power consumption samples (5,000 values)

Plaintexts File (data-plaintexts.parquet):

Column Type Description
trace_idx int Index linking to corresponding trace
plaintext list[uint8] 16-byte AES plaintext input

Ciphertexts File (data-ciphertexts.parquet):

Column Type Description
trace_idx int Index linking to corresponding trace
ciphertext list[uint8] 16-byte AES ciphertext output

Usage Examples

Basic Loading with HuggingFace Datasets

from datasets import load_dataset
import pyarrow.parquet as pq
import pyarrow.compute as pc

# Download dataset (automatically handles all chunks)
dataset = load_dataset("DLSCA/dataset1")

# Load and combine all data
trace_tables = [pq.read_table(f) for f in dataset.data_files['traces']]
traces_table = pa.concat_tables(trace_tables)
plaintexts_table = pq.read_table(dataset.data_files['plaintexts'])
ciphertexts_table = pq.read_table(dataset.data_files['ciphertexts'])

# Merge on trace_idx to get complete dataset using pyarrow
import pyarrow as pa
full_table = traces_table.join(plaintexts_table, 'trace_idx').join(ciphertexts_table, 'trace_idx')

print(f"Loaded {len(full_table):,} complete traces")
print(full_table.slice(0, 5))  # Show first 5 rows

Efficient Batch Processing

import pyarrow.parquet as pq
from pathlib import Path
import numpy as np

# Download dataset locally first
dataset = load_dataset("DLSCA/dataset1", cache_dir="./cache")

# Process traces in batches (memory-efficient)
trace_files = sorted(Path("./cache").glob("data-traces-*.parquet"))
plaintexts_table = pq.read_table("./cache/data-plaintexts.parquet")
ciphertexts_table = pq.read_table("./cache/data-ciphertexts.parquet")

for trace_file in trace_files:
    # Load one chunk at a time
    chunk_table = pq.read_table(trace_file)
    
    # Join with metadata
    chunk_full = chunk_table.join(plaintexts_table, 'trace_idx').join(ciphertexts_table, 'trace_idx')
    
    # Process this batch
    for i in range(len(chunk_full)):
        trace = np.array(chunk_full['trace'][i].as_py(), dtype=np.float32)
        plaintext = np.array(chunk_full['plaintext'][i].as_py(), dtype=np.uint8)
        ciphertext = np.array(chunk_full['ciphertext'][i].as_py(), dtype=np.uint8)
        
        # Your side-channel analysis here
        # Example: Extract intermediate value for byte 0
        # sbox_output = AES_SBOX[plaintext[0] ^ key_guess]

PyTorch DataLoader Integration

import torch
from torch.utils.data import Dataset, DataLoader
import pyarrow.parquet as pq
import pyarrow as pa
import numpy as np

class SCADataset(Dataset):
    def __init__(self, traces_table, plaintexts_table, ciphertexts_table):
        # Join all tables on trace_idx
        self.data = traces_table.join(plaintexts_table, 'trace_idx').join(ciphertexts_table, 'trace_idx')
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        trace = torch.tensor(self.data['trace'][idx].as_py(), dtype=torch.float32)
        plaintext = torch.tensor(self.data['plaintext'][idx].as_py(), dtype=torch.uint8)
        ciphertext = torch.tensor(self.data['ciphertext'][idx].as_py(), dtype=torch.uint8)
        return trace, plaintext, ciphertext

# Load dataset
dataset = load_dataset("DLSCA/dataset1")
trace_tables = [pq.read_table(f) for f in dataset['traces']]
traces_table = pa.concat_tables(trace_tables)
plaintexts_table = pq.read_table(dataset['plaintexts'])
ciphertexts_table = pq.read_table(dataset['ciphertexts'])

# Create PyTorch dataset and loader
sca_dataset = SCADataset(traces_table, plaintexts_table, ciphertexts_table)
dataloader = DataLoader(sca_dataset, batch_size=32, shuffle=True)

# Training loop
for traces, plaintexts, ciphertexts in dataloader:
    # Your neural network training here
    pass

Why Chunked Storage?

Problem: Power traces are large (e.g., 5,000 samples × 10,000 traces ≈ 191 MB uncompressed). If upload/download fails at 90%, you'd have to restart from 0%.

Solution:

  • Traces are chunked into 10 files of ~1000 traces each
  • Metadata stays together in single files (only ~312 KB combined)
  • Resume capability: Failed uploads/downloads can continue from the last successful chunk
  • Parallel processing: Can process chunks independently for distributed computing

All files are linked via trace_idx, so merging is straightforward with pyarrow.

Use Cases

This dataset is suitable for:

  • Deep Learning-based Side-Channel Analysis (DLSCA)
  • Profiling attacks on AES implementations
  • Machine learning model training for power analysis
  • Research on neural network architectures for SCA
  • Educational purposes in cryptographic engineering

Dataset Creation

This dataset was automatically generated using the DLSCA platform for side-channel analysis research and development.

Generation Parameters:

  • Chunk Size: 1000 traces per file
  • Synthetic traces with simulated noise and periodic patterns
  • Random plaintexts and ciphertexts (not real AES encryptions)

Citation

If you use this dataset in your research, please cite:

@dataset{dataset1,
  title={dataset1: Synthetic Side-Channel Analysis Dataset},
  author={DLSCA Platform},
  year={2026},
  publisher={HuggingFace},
  url={https://huggingface.co/datasets/DLSCA/dataset1}
}
Downloads last month
-

Space using DLSCA/dataset1 1