Datasets:

License:
Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 64, in _split_generators
                  with h5py.File(first_file, "r") as h5:
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 564, in __init__
                  fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 238, in make_fid
                  fid = h5f.open(name, flags, fapl=fapl)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "h5py/_objects.pyx", line 56, in h5py._objects.with_phil.wrapper
                File "h5py/_objects.pyx", line 57, in h5py._objects.with_phil.wrapper
                File "h5py/h5f.pyx", line 102, in h5py.h5f.open
              FileNotFoundError: [Errno 2] Unable to synchronously open file (unable to open file: name = 'hf://datasets/HORA-DB/HORA@8eee458c5c8364f76f5c2a0438e9ab8f11e6cd4e/DualArm/handover_glass_bottle_on_mat/handover_glass_bottle_on_mat_chunk_0.hdf5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

HORA: Hand–Object to Robot Action Dataset

Dataset Summary

HORA (Hand–Object to Robot Action) is a large-scale multimodal dataset that converts human hand–object interaction (HOI) demonstrations into robot-usable supervision for cross-embodiment learning. It combines HOI-style annotations (e.g., MANO hand parameters, object pose, contact) with embodied-robot learning signals (e.g., robot observations, end-effector trajectories) under a unified canonical action space.

HORA is constructed from three sources/subsets:

  1. HORA(Mocap): custom multi-view motion capture system with tactile-sensor gloves (includes tactile maps).
  2. HORA(Recordings): custom RGB(D) HOI recording setup (no tactile).
  3. HORA(Public Dataset): derived from multiple public HOI datasets and retargeted to robot embodiments (6/7-DoF arms).

Overall scale: ~150k trajectories across all subsets.


Key Features

  • Unified multimodal representation across subsets, covering both HOI analysis and downstream robotic learning.
  • HOI modalities: MANO hand parameters (pose/shape + global transform), object 6DoF pose, object assets, hand–object contact annotations.
  • Robot modalities: wrist-view & third-person observations, and end-effector pose trajectories for robotic arms, all mapped to a canonical action space.
  • Tactile (mocap subset): dense tactile map for both hand and object (plus object pose & assets).

Dataset Statistics

Subset Tactile #Trajectories Notes
HORA(Mocap) 63,141 6-DoF object pose + assets + tactile map
HORA(Recordings) 23,560 6-DoF object pose + assets
HORA(Public Dataset) 66,924 retargeted cross-embodiment robot modalities
Total ~150k

Supported Tasks and Use Cases

HORA is suitable for:

  • Imitation Learning (IL) / Visuomotor policy learning
  • Vision–Language–Action (VLA) model training and evaluation
  • HOI-centric research: contact analysis, pose/trajectory learning, hand/object dynamics

Data Format

Example Episode Structure

Each episode/trajectory may include:

HOI fields

  • hand_mano: MANO parameters (pose/shape, global rotation/translation)
  • object_pose_6d: 6DoF object pose sequence
  • contact: hand–object contact annotations
  • object_asset: mesh/texture id or path

Robot fields

  • Global Attributes

    • task_description: Natural language instruction for the task (stored as HDF5 attribute).
    • total_demos: Total number of trajectories in the file.
  • Observations (obs group)

    • agentview_rgb: JPEG byte stream (variable length uint8). Decodes to (T, 480, 640, 3).
    • eye_in_hand_{side}_rgb: JPEG byte stream (variable length uint8). Decodes to (T, 480, 640, 3).
    • {prefix}_joint_states: Arm joint positions in radians. Shape (T, N_dof).
    • {prefix}_gripper_states: Gripper joint positions. Shape (T, N_grip).
    • {prefix}_eef_pos: End-effector position in Robot Base Frame. Shape (T, 3).
    • {prefix}_eef_quat: End-effector orientation (w, x, y, z) in Robot Base Frame. Shape (T, 4).
    • object_{name}_pos: Object ground truth position in World Frame. Shape (T, 3).
    • object_{name}_quat: Object ground truth orientation (w, x, y, z) in World Frame. Shape (T, 4).
  • Actions & States

    Note: For multi-robot setups, the fields below concatenate data from all robots in order (e.g., [robot0, robot1]).

    • actions: Joint-space control targets. Shape (T, N_dof + 1). Format: [joint_positions, normalized_gripper] where gripper is in [0, 1].
    • actions_ee: Cartesian control targets. Shape (T, 7). Format: [pos (3), axis-angle (3), normalized_gripper (1)].
    • robot_states: Robot base pose in World Frame. Shape (T, 7 * N_robots). Format: [pos (3), quat (4)] per robot, quat is (w, x, y, z).

Tactile fields (mocap only)

  • tactile_hand: dense tactile map (time × sensors/vertices)
  • tactile_object: dense tactile map

Downloads last month
911