Search is not available for this dataset
video
video |
|---|
End of preview. Expand
in Data Studio
FVQ-20K Dataset
Overview
- FVQ-20K is an in-the-wild face video quality assessment (FVQA) dataset, which contains 20,000 face videos with MOS annotations.
- The FVQ-20K dataset is divided into training, validation, and test sets with a ratio of 80% : 5% : 15%.
Data Structure
FVQ-20K
│
├── train
│ ├── labels.txt
│ └── videos
│ ├── *.mp4
│ └── ...
├── val
│ ├── labels.txt
│ └── videos
│ ├── *.mp4
│ └── ...
└── test
├── labels.txt
└── videos
├── *.mp4
└── ...
• labels.txt contains video names and their corresponding MOS scores (ranging from 0 to 100).
Citation
If you use this dataset, please consider citing
@inproceedings{wu2025fvq,
title={FVQ: A Large-Scale Dataset and an LMM-based Method for Face Video Quality Assessment},
author={Wu, Sijing and Li, Yunhao and Xu, Ziwen and Gao, Yixuan and Duan, Huiyu and Sun, Wei and Zhai, Guangtao},
booktitle={Proceedings of the 33rd ACM International Conference on Multimedia},
pages={6928--6937},
year={2025}
}
Contact
- Sijing Wu (wusijing@sjtu.edu.cn)
- Downloads last month
- 42