Add Dataset card for Genfusion training data

#2
by macandro96 - opened
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ size_categories:
4
+ - 10K<n<100K
5
+ ---
6
+ # Dataset Card for Dataset Name
7
+
8
+ Homepage: https://genfusion.sibowu.com/
9
+
10
+ Repository: https://github.com/Inception3D/GenFusion?tab=readme-ov-file
11
+
12
+ Paper: [GenFusion: Closing the Loop between Reconstruction and Generation via Videos](https://arxiv.org/pdf/2503.21219)
13
+
14
+ ## Dataset Details
15
+
16
+ Dataset that was used for training in Genfusion paper. The dataset is mostly sourced from the [DL3DV-10k dataset](https://arxiv.org/abs/2312.16256)
17
+
18
+ ### Dataset Description
19
+
20
+ A large-scale scene dataset, featuring 51.2 million frames from 10,510 videos captured from 65 types of point-of-interest (POI) locations, covering both bounded and unbounded scenes, with different levels of reflection, transparency, and lighting.
21
+ This dataset is used to train a diffusion model to reconstruct and generate detailed 3D scenes from sparse or partial video views.
22
+
23
+
24
+ ### Dataset Sources [optional]
25
+
26
+ Sourced from [DL3DV-10k dataset](https://arxiv.org/abs/2312.16256)
27
+
28
+ - **Repository:** https://github.com/DL3DV-10K/Dataset
29
+ - **Paper:** [DL3DV-10K: A Large-Scale Scene Dataset for Deep Learning-based 3D Vision](https://arxiv.org/abs/2312.16256)
30
+
31
+ ## Uses
32
+
33
+ 1. 3D scene reconstruction from monocular or multi-view video
34
+
35
+ 2. Generative modeling of 3D environments
36
+
37
+ 3. Sparse view synthesis and completion
38
+
39
+
40
+
41
+ ## Citation
42
+
43
+ Please cite the Genfusion and the DL3DV-10k paper
44
+
45
+ ### Genfusion
46
+ ```
47
+ @inproceedings{Wu2025GenFusion,
48
+ author = {Sibo Wu and Congrong Xu and Binbin Huang and Geiger Andreas and Anpei Chen},
49
+ title = {GenFusion: Closing the Loop between Reconstruction and Generation via Videos},
50
+ booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
51
+ year = {2025}
52
+ }
53
+ ```
54
+
55
+ ### DL3DV-10k
56
+ ```
57
+ @inproceedings{ling2024dl3dv,
58
+ title={Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d vision},
59
+ author={Ling, Lu and Sheng, Yichen and Tu, Zhi and Zhao, Wentian and Xin, Cheng and Wan, Kun and Yu, Lantao and Guo, Qianyu and Yu, Zixun and Lu, Yawen and others},
60
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
61
+ pages={22160--22169},
62
+ year={2024}
63
+ }
64
+ ```