The Dataset Viewer has been disabled on this dataset.

Dataset Image

This dataset follows the TACO specification.


Major TOM Core-Combo (TACO)

Dataset Image

A TACO-formatted multimodal dataset built on Major TOM. Each sample aligns Sentinel-2 L2A, Sentinel-1 RTC, Copernicus DEM 30, and optional Major TOM embeddings under a single grid so patches are spatially matched and ready for training and evaluation.

Description

Dataset

This dataset packages co-registered patches drawn from the Major TOM core datasets (S2 L2A / S2 L1C / S1 RTC / DEM) and the official Major TOM embeddings (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM defines a geographical indexing grid and a metadata structure to merge multi-source EO dataβ€”ideal for large-scale pretraining, representation learning, and multimodal fusion.

What each sample contains:

  • S2 L2A (10 m) β€” 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
  • S1 RTC (10 m) β€” backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
  • DEM (30 m β†’ 10 m) β€” Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
  • Embeddings (optional) β€” one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
  • Metadata β€” acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.

The dataset inherits global land coverage from Major TOM Core and is extensible (you can enable/disable modalities and embeddings per tortilla).

Sensors used

  • Sentinel-2 MSI (L2A/L1C) β€” optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
  • Sentinel-1 RTC β€” SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
  • Copernicus DEM 30 β€” global 30 m elevation resampled to 10 m for alignment.
  • Embeddings β€” model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).

Creators

  • ESA Ξ¦-lab & collaborators

Original datasets

See the official Major TOM organization for coverage, counts and updates:

  • Major TOM organization overview (Hugging Face)
  • Core datasets: Core-S2L2A, Core-S2L1C, Core-S1RTC, Core-DEM
  • Embedding releases: Core-S2L1C-SSL4EO, Core-S1RTC-SSL4EO, Core-S2RGB-DINOv2, Core-S2RGB-SigLIP, Core-S2L1C-DeCUR, Core-S1RTC-DeCUR, Core-S2L2A-MMEarth, Core-AlphaEarth-Embeddings
  • Spec & paper: β€œMajor TOM: Expandable Datasets for Earth Observation” (arXiv) and the IGARSS 2024 citation (see Publications)

Note: sizes/coverage and licenses are inherited from upstream. Always consult the upstream dataset cards.

TACO dataset

Construction

  • Grid & tiling: adopt Major TOM’s global grid; fixed-size 512 Γ— 512 px @ 10 m (~5.12 km) windows keyed by grid cell.
  • Temporal pairing: select closest-in-time S1/S2 acquisitions per cell (configurable), preferring clear-sky S2 for optical stacks.
  • Embeddings: if enabled, fetch and store per-patch embedding vectors (Parquet/NPY sidecar) indexed by the tortilla.
  • Lineage metadata: upstream identifiers/commits, acquisition timestamps, processing levels, and provenance.

Default patch geometry

  • Spatial extent: 5160 m Γ— 5160 m
  • S2 tensor (bands): 13 (B1–B12 incl. B10) β†’ 512 Γ— 512 Γ— 13
  • S1 tensor (VV/VH): 2 (plus optional angle) β†’ 512 Γ— 512 Γ— 2–3
  • DEM tensor: 1 (or +slope/aspect) β†’ 512 Γ— 512 Γ— 1–3
  • Embeddings: 1..N vectors stored as sidecars (per-patch, not per-pixel)

Spectral Bands (S2 MSI)

We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:

idx Band Name Central Ξ» Nominal Res. Notes
0 B1 Coastal Aerosol 443 nm 60 m resampled to 10 m
1 B2 Blue 492 nm 10 m
2 B3 Green 560 nm 10 m
3 B4 Red 665 nm 10 m
4 B5 Red Edge 1 704 nm 20 m resampled to 10 m
5 B6 Red Edge 2 740 nm 20 m resampled to 10 m
6 B7 Red Edge 3 783 nm 20 m resampled to 10 m
7 B8 NIR (Broad) 833 nm 10 m
8 B8A NIR (Narrow) 865 nm 20 m resampled to 10 m
9 B9 Water Vapour 945 nm 60 m resampled to 10 m
10 B10 Cirrus (WV 1375 nm) 1375 nm 60 m optional for ML
11 B11 SWIR 1 1610 nm 20 m resampled to 10 m
12 B12 SWIR 2 2200 nm 20 m resampled to 10 m

πŸ”„ Reproducible Example

import tacoreader
import rasterio as rio
import numpy as np
import matplotlib.pyplot as plt

# Load the dataset (replace with the final registry name when published)
ds = tacoreader.load("tacofoundation:majortom-core-combo")

# Read a sample
i = 0
row = ds.read(i)
row_id = ds.iloc[i]["tortilla:id"]

s2_path = row.read("S2_L2A")      # GeoTIFF
s1_path = row.read("S1_RTC")      # GeoTIFF
dem_path = row.read("DEM")        # GeoTIFF
# emb_path = row.read("EMB")      # Optional embeddings (Parquet/NPY)

with rio.open(s2_path) as s2, rio.open(s1_path) as s1, rio.open(dem_path) as dem:
    # Simple S2 RGB (B4,B3,B2)
    rgb = np.stack([s2.read(4), s2.read(3), s2.read(2)], axis=0)
    rgb = np.transpose(rgb, (1,2,0))
    rgb_norm = np.clip(rgb / 2000.0, 0, 1)

    vv = s1.read(1)
    dem_elev = dem.read(1)

fig, ax = plt.subplots(1,3, figsize=(13,4.2))
ax[0].imshow(rgb_norm); ax[0].set_title(f"S2 RGB β€” {row_id}"); ax[0].axis("off")
ax[1].imshow(vv);       ax[1].set_title("S1 VV"); ax[1].axis("off")
ax[2].imshow(dem_elev); ax[2].set_title("DEM");   ax[2].axis("off")
plt.tight_layout(); plt.show()
example

πŸ›°οΈ Sensor Information

Sources in this dataset: sentinel2msi, sentinel1-rtc, cop-dem30, and Major TOM embeddings (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth).

🎯 Tasks

General-purpose: self-supervised pretraining, representation learning, multimodal fusion, semantic segmentation, change detection, classification, retrieval.

πŸ“‚ Original Data Repositories (Upstream)

  • Major TOM organization page.

πŸ’¬ Discussion

Use the Major TOM org discussions/Spaces and the satellite-image-deep-learning Discord (Major TOM channels) to coordinate contributions and combinations.

πŸ”€ Split Strategy

All train.

πŸ“š Scientific Publications

Publication 01

  • arXiv: Major TOM: Expandable Datasets for Earth Observation (Francis & Czerkawski, 2024). BibTeX:
@article{MajorTOM2024,
author  = {Francis, Alistair and Czerkawski, Mikolaj},
title   = {Major TOM: Expandable Datasets for Earth Observation},
journal = {arXiv preprint arXiv:2402.12095},
year    = {2024},
doi     = {10.1109/IGARSS53475.2024.10640760}
}

Publication 02

  • arXiv (2024): Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space.
    @article{czerkawski2024global,
    title={Global and dense embeddings of earth: Major tom floating in the latent space},
    author={Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J{\"A} and others},
    journal={arXiv preprint arXiv:2412.05600},
    year={2024},
    doi= {10.48550/arXiv.2412.05600}
    }
    

🀝 Data Providers

Name Role URL
ESA Ξ¦-lab producer / coordinator https://philab.esa.int/
Major TOM (HF) publisher (org) https://huggingface.co/Major-TOM
CloudFerro (embeddings infra) collaborator https://cloudferro.com/

πŸ§‘β€πŸ”¬ Curators

Name Organization URL
Julio Contreras Image & Signal Processing https://juliocontrerash.github.io/
TACO Foundation Curation (TACO format) https://huggingface.co/datasets/tacofoundation/

🎞 Official Image Datasets (from Major TOM)

Dataset Modality Number of Patches Sensing Type Comments
Core-S2L2A Sentinel-2 Level 2A 2,245,886 Multi-Spectral Global (β‰ˆ23 TB)
Core-S2L1C Sentinel-2 Level 1C 2,245,886 Multi-Spectral Global (β‰ˆ23 TB)
Core-S1RTC Sentinel-1 RTC 1,469,955 SAR Global (β‰ˆ16 TB)
Core-DEM Copernicus DEM 30 1,837,843 Digital Surface Model Global (β‰ˆ1 TB)

πŸ“Š Official Embedding Datasets (from Major TOM)

Dataset Modality # Embeddings Sensing Type Source Dataset Source Model Size
Core-S2L1C-SSL4EO Sentinel-2 Level 1C 56,147,150 Multi-Spectral Core-S2L1C SSL4EO-ResNet50-DINO 252.9 GB
Core-S1RTC-SSL4EO Sentinel-1 RTC 36,748,875 SAR Core-S1RTC SSL4EO-ResNet50-MOCO 332.5 GB
Core-S2RGB-DINOv2 Sentinel-2 L2A (RGB) 56,147,150 True Colour Core-S2L2A DINOv2 223.1 GB
Core-S2RGB-SigLIP Sentinel-2 L2A (RGB) 20,212,974 True Colour Core-S2L2A SigLIP-SO400M-384 41.3 GB
Core-S2L1C-DeCUR Sentinel-2 Level 1C 56,147,150 Multi-Spectral Core-S2L1C SSL4EO-ResNet50-DeCUR 252.9 GB
Core-S1RTC-DeCUR Sentinel-1 RTC 36,748,875 SAR Core-S1RTC SSL4EO-ResNet50-DeCUR 332.5 GB
Core-S2L2A-MMEarth Sentinel-2 L2A (MSI) 39,727,477,454 Multi-Spectral Core-S2L2A MMEarth 5080 GB
Core-AlphaEarth-Embeddings Multimodal 71,276,453,136 Multiple AlphaEarth AlphaEarth 6070 GB

Key sources for facts & tables: Major TOM org page with official tables and IGARSS citation (org card), the arXiv paper describing the framework and grid, specific upstream dataset cards (Core-S2L2A / Core-S1RTC / Core-DEM), the AlphaEarth subset card, and ESA Ξ¦-lab’s post on embedding expansions. (huggingface.co, arxiv.org, philab.esa.int)

Downloads last month
51