Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

RoboChallenge Dataset

Tasks and Embodiments

The dataset includes 30 diverse manipulation tasks (Table30) across 4 embodiments:

Available Tasks

  • arrange_flowers
  • arrange_fruits_in_basket
  • arrange_paper_cups
  • clean_dining_table
  • fold_dishcloth
  • hang_toothbrush_cup
  • make_vegetarian_sandwich
  • move_objects_into_box
  • open_the_drawer
  • place_shoes_on_rack
  • plug_in_network_cable
  • pour_fries_into_plate
  • press_three_buttons
  • put_cup_on_coaster
  • put_opener_in_drawer
  • put_pen_into_pencil_case
  • scan_QR_code
  • search_green_boxes
  • set_the_plates
  • shred_scrap_paper
  • sort_books
  • sort_electronic_products
  • stack_bowls
  • stack_color_blocks
  • stick_tape_to_box
  • sweep_the_rubbish
  • turn_on_faucet
  • turn_on_light_switch
  • water_potted_plant
  • wipe_the_table

Embodiments

  • ARX5 - Single-arm with triple camera setup (wrist + global + right-side views)
  • UR5 - Single-arm with dual camera setup (wrist + global views)
  • FRANKA - Single-arm with triple perspective setup (wrist + main + side views)
  • ALOHA - Dual-arm with triple wrist camera setup (left wrist + right wrist + global views)

Dataset Structure

Hierarchy

The dataset is organized by tasks, with each task containing multiple demonstration episodes:

.
β”œβ”€β”€ <task_name>/                    # e.g., arrange_flowers, fold_dishcloth
β”‚   β”œβ”€β”€ task_desc.json              # Task description
β”‚   β”œβ”€β”€ meta/                       # Task-level metadata
β”‚   β”‚   β”œβ”€β”€ task_info.json         
β”‚   └── data/                       # Episode data
β”‚       β”œβ”€β”€ episode_000000/         # Individual episode
β”‚       β”‚   β”œβ”€β”€ meta/
β”‚       β”‚   β”‚   └── episode_meta.json    # Episode metadata
β”‚       β”‚   β”œβ”€β”€ states/
β”‚       β”‚   β”‚   # for single-arm (ARX5, UR5, Franka)
β”‚       β”‚   β”‚   β”œβ”€β”€ states.jsonl         # Single-arm robot states
β”‚       β”‚   β”‚   # for dual-arm (ALOHA)
β”‚       β”‚   β”‚   β”œβ”€β”€ left_states.jsonl    # Left arm states
β”‚       β”‚   β”‚   └── right_states.jsonl   # Right arm states
β”‚       β”‚   └── videos/
β”‚       β”‚       # Video configurations vary by robot model:
β”‚       β”‚       # ARX5
β”‚       β”‚       β”œβ”€β”€ arm_realsense_rgb.mp4       # Wrist view 
β”‚       β”‚       β”œβ”€β”€ global_realsense_rgb.mp4    # Global view 
β”‚       β”‚       └── right_realsense_rgb.mp4     # Side view
β”‚       β”‚       # UR5
β”‚       β”‚       β”œβ”€β”€ global_realsense_rgb.mp4    # Global view 
β”‚       β”‚       └── handeye_realsense_rgb.mp4   # Wrist view
β”‚       β”‚       # Franka
β”‚       β”‚       β”œβ”€β”€ handeye_realsense_rgb.mp4   # Wrist view
β”‚       β”‚       β”œβ”€β”€ main_realsense_rgb.mp4      # Global view 
β”‚       β”‚       └── side_realsense_rgb.mp4      # Side view 
β”‚       β”‚       # ALOHA
β”‚       β”‚       β”œβ”€β”€ cam_high_rgb.mp4            # Global view 
β”‚       β”‚       β”œβ”€β”€ cam_wrist_left_rgb.mp4      # Left wrist view
β”‚       β”‚       └── cam_wrist_right_rgb.mp4     # Right wrist view
β”‚       β”œβ”€β”€ episode_000001/
β”‚       └── ...
β”œβ”€β”€ convert_to_lerobot.py           # Conversion script
└── README.md

Metadata Schema

task_info.json

{
    "robot_id": "arx5_1",                    // Robot model identifier
    "task_desc": {
        "task_name": "arrange_flowers",      // Task identifier
        "prompt": "insert the three flowers on the table into the vase one by one",
        "scoring": "...",                    // Scoring criteria
        "task_tag": [                        // Task characteristics
            "repeated",
            "single-arm", 
            "ARX5",
            "precise3d"
        ]
    },
    "video_info": {
        "fps": 30,                           // Video frame rate
        "ext": "mp4",                        // Video format
        "encoding": {
            "vcodec": "libx264",             // Video codec
            "pix_fmt": "yuv420p"             // Pixel format
        }
    }
}

episode_meta.json

{
    "episode_index": 0,                      // Episode number
    "start_time": 1750405586.3430033,       // Unix timestamp (start)
    "end_time": 1750405642.5247612,         // Unix timestamp (end)
    "frames": 1672                          // Total video frames
}

Robot States Schema

Each episode contains states data stored in JSONL format. Depending on the embodiment, the structure differs slightly:

  • Single-arm robots (ARX5, UR5, Franka) β†’ states.jsonl
  • Dual-arm robots (ALOHA) β†’ left_states.jsonl and right_states.jsonl

Each file records the robot’s proprioceptive signals per frame, including joint angles, end-effector poses, gripper states, and timestamps. The exact field definitions and coordinate conventions vary by platform, as summarized below.

ARX5

Data Name Data Key Shape Semantics
Joint control joint_positions (6,) Joint angle (in radians) from the base to the end effector.
Pose control ee_positions (6,) End effector pose (tx, ty, tz, roll, pitch, yaw), where (roll, pitch, yaw) is relative euler angles from the arm base coordinate. X : back to front; Y: right to left; Z: down to up.
Gripper control gripper (1,) Actual gripper width measurement in meter.
Time stamp timestamp (1,) Floating point timestamp (in milliseconds) of each frame.

UR5

Data Name Data Key Shape Semantics
Joint control joint_positions (6,) Joint angle (in radians) from the base to the end effector.
Pose control ee_positions (7,) End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : front to back; Y: left to right; Z: down to up.
Gripper control gripper (1,) Gripper closing angle, 0 for fully open, 255 for fully closed.
Time stamp timestamp (1,) Floating point timestamp (in milliseconds) of each frame.

Franka

Data Name Data Key Shape Semantics
Joint control joint_positions (7,) Joint angle (in radians) from the base to the end effector.
Pose control ee_positions (7,) End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left; Z: down to up.
Gripper control gripper (2,) Gripper trigger signals in the (close_button, open_button) order.
Gripper width gripper_width (1,) Actual gripper width measurement
Time stamp timestamp (1,) Floating point timestamp (in milliseconds) of each frame.

ALOHA

Data Name Data Key Shape Semantics
Master joint control joint_positions (6,) Maste joint angle (in radians) from the base to the end effector.
Joint velocity joint_vel (7,) Speed of 6 joint and gripper
Puppet joint control qpos (6,) Puppet joint angle (in radians) from the base to the end effector.
Puppet pose control ee_pose_quaternion (7,) End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left ; Z: down to up.
Puppet pose control ee_pose_rpy (6,) End effector pose (tx, ty, tz, rr, rp, ry), where (tx, ty, tz) is relative position from the arm base coordinate , (rr, rp, ry) is euler (in radians). X : back to front; Y: right to left ; Z: down to up.
Gripper control gripper (1,) Actual gripper width measurement in meter.
Time stamp timestamp (1,) Floating point timestamp (in mileseconds) of each frame.

Convert to LeRobot

While you can implement a custom Dataset class to read RoboChallenge data directly, we strongly recommend converting to LeRobot format to take advantage of LeRobot's comprehensive data processing and loading utilities.

The example script convert_to_lerobot.py converts ARX5 data to the LeRobot dataset as a example. For other robot embodiments (UR5, Franka, ALOHA), you can adapt the script accordingly.

Prerequisites

  • Python 3.9+ with the following packages:
    • lerobot==0.1.0
    • opencv-python
    • numpy
  • Configure $LEROBOT_HOME (defaults to ~/.lerobot if unset).
pip install lerobot==0.1.0 opencv-python numpy
export LEROBOT_HOME="/path/to/lerobot_home"

Usage

Run the converter from the repository root (or provide an absolute path):

python convert_to_lerobot.py \
  --repo-name example_repo \
  --raw-dataset /path/to/example_dataset \
  --frame-interval 1 

Output

  • Frames and metadata are saved to $LEROBOT_HOME/<repo-name>.
  • At the end, the script calls dataset.consolidate(run_compute_stats=False). If you require aggregated statistics, run it with run_compute_stats=True or execute a separate stats job.
Downloads last month
3,262