The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
RoboChallenge Dataset
Tasks and Embodiments
The dataset includes 30 diverse manipulation tasks (Table30) across 4 embodiments:
Available Tasks
arrange_flowersarrange_fruits_in_basketarrange_paper_cupsclean_dining_tablefold_dishclothhang_toothbrush_cupmake_vegetarian_sandwichmove_objects_into_boxopen_the_drawerplace_shoes_on_rackplug_in_network_cablepour_fries_into_platepress_three_buttonsput_cup_on_coasterput_opener_in_drawerput_pen_into_pencil_casescan_QR_codesearch_green_boxesset_the_platesshred_scrap_papersort_bookssort_electronic_productsstack_bowlsstack_color_blocksstick_tape_to_boxsweep_the_rubbishturn_on_faucetturn_on_light_switchwater_potted_plantwipe_the_table
Embodiments
- ARX5 - Single-arm with triple camera setup (wrist + global + right-side views)
- UR5 - Single-arm with dual camera setup (wrist + global views)
- FRANKA - Single-arm with triple perspective setup (wrist + main + side views)
- ALOHA - Dual-arm with triple wrist camera setup (left wrist + right wrist + global views)
Dataset Structure
Hierarchy
The dataset is organized by tasks, with each task containing multiple demonstration episodes:
.
βββ <task_name>/ # e.g., arrange_flowers, fold_dishcloth
β βββ task_desc.json # Task description
β βββ meta/ # Task-level metadata
β β βββ task_info.json
β βββ data/ # Episode data
β βββ episode_000000/ # Individual episode
β β βββ meta/
β β β βββ episode_meta.json # Episode metadata
β β βββ states/
β β β # for single-arm (ARX5, UR5, Franka)
β β β βββ states.jsonl # Single-arm robot states
β β β # for dual-arm (ALOHA)
β β β βββ left_states.jsonl # Left arm states
β β β βββ right_states.jsonl # Right arm states
β β βββ videos/
β β # Video configurations vary by robot model:
β β # ARX5
β β βββ arm_realsense_rgb.mp4 # Wrist view
β β βββ global_realsense_rgb.mp4 # Global view
β β βββ right_realsense_rgb.mp4 # Side view
β β # UR5
β β βββ global_realsense_rgb.mp4 # Global view
β β βββ handeye_realsense_rgb.mp4 # Wrist view
β β # Franka
β β βββ handeye_realsense_rgb.mp4 # Wrist view
β β βββ main_realsense_rgb.mp4 # Global view
β β βββ side_realsense_rgb.mp4 # Side view
β β # ALOHA
β β βββ cam_high_rgb.mp4 # Global view
β β βββ cam_wrist_left_rgb.mp4 # Left wrist view
β β βββ cam_wrist_right_rgb.mp4 # Right wrist view
β βββ episode_000001/
β βββ ...
βββ convert_to_lerobot.py # Conversion script
βββ README.md
Metadata Schema
task_info.json
{
"robot_id": "arx5_1", // Robot model identifier
"task_desc": {
"task_name": "arrange_flowers", // Task identifier
"prompt": "insert the three flowers on the table into the vase one by one",
"scoring": "...", // Scoring criteria
"task_tag": [ // Task characteristics
"repeated",
"single-arm",
"ARX5",
"precise3d"
]
},
"video_info": {
"fps": 30, // Video frame rate
"ext": "mp4", // Video format
"encoding": {
"vcodec": "libx264", // Video codec
"pix_fmt": "yuv420p" // Pixel format
}
}
}
episode_meta.json
{
"episode_index": 0, // Episode number
"start_time": 1750405586.3430033, // Unix timestamp (start)
"end_time": 1750405642.5247612, // Unix timestamp (end)
"frames": 1672 // Total video frames
}
Robot States Schema
Each episode contains states data stored in JSONL format. Depending on the embodiment, the structure differs slightly:
- Single-arm robots (ARX5, UR5, Franka) β
states.jsonl - Dual-arm robots (ALOHA) β
left_states.jsonlandright_states.jsonl
Each file records the robotβs proprioceptive signals per frame, including joint angles, end-effector poses, gripper states, and timestamps. The exact field definitions and coordinate conventions vary by platform, as summarized below.
ARX5
| Data Name | Data Key | Shape | Semantics |
|---|---|---|---|
| Joint control | joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. |
| Pose control | ee_positions | (6,) | End effector pose (tx, ty, tz, roll, pitch, yaw), where (roll, pitch, yaw) is relative euler angles from the arm base coordinate. X : back to front; Y: right to left; Z: down to up. |
| Gripper control | gripper | (1,) | Actual gripper width measurement in meter. |
| Time stamp | timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
UR5
| Data Name | Data Key | Shape | Semantics |
|---|---|---|---|
| Joint control | joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. |
| Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : front to back; Y: left to right; Z: down to up. |
| Gripper control | gripper | (1,) | Gripper closing angle, 0 for fully open, 255 for fully closed. |
| Time stamp | timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
Franka
| Data Name | Data Key | Shape | Semantics |
|---|---|---|---|
| Joint control | joint_positions | (7,) | Joint angle (in radians) from the base to the end effector. |
| Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left; Z: down to up. |
| Gripper control | gripper | (2,) | Gripper trigger signals in the (close_button, open_button) order. |
| Gripper width | gripper_width | (1,) | Actual gripper width measurement |
| Time stamp | timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
ALOHA
| Data Name | Data Key | Shape | Semantics |
|---|---|---|---|
| Master joint control | joint_positions | (6,) | Maste joint angle (in radians) from the base to the end effector. |
| Joint velocity | joint_vel | (7,) | Speed of 6 joint and gripper |
| Puppet joint control | qpos | (6,) | Puppet joint angle (in radians) from the base to the end effector. |
| Puppet pose control | ee_pose_quaternion | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left ; Z: down to up. |
| Puppet pose control | ee_pose_rpy | (6,) | End effector pose (tx, ty, tz, rr, rp, ry), where (tx, ty, tz) is relative position from the arm base coordinate , (rr, rp, ry) is euler (in radians). X : back to front; Y: right to left ; Z: down to up. |
| Gripper control | gripper | (1,) | Actual gripper width measurement in meter. |
| Time stamp | timestamp | (1,) | Floating point timestamp (in mileseconds) of each frame. |
Convert to LeRobot
While you can implement a custom Dataset class to read RoboChallenge data directly, we strongly recommend converting to LeRobot format to take advantage of LeRobot's comprehensive data processing and loading utilities.
The example script convert_to_lerobot.py converts ARX5 data to the LeRobot dataset as a example. For other robot embodiments (UR5, Franka, ALOHA), you can adapt the script accordingly.
Prerequisites
- Python 3.9+ with the following packages:
lerobot==0.1.0opencv-pythonnumpy
- Configure
$LEROBOT_HOME(defaults to~/.lerobotif unset).
pip install lerobot==0.1.0 opencv-python numpy
export LEROBOT_HOME="/path/to/lerobot_home"
Usage
Run the converter from the repository root (or provide an absolute path):
python convert_to_lerobot.py \
--repo-name example_repo \
--raw-dataset /path/to/example_dataset \
--frame-interval 1
Output
- Frames and metadata are saved to
$LEROBOT_HOME/<repo-name>. - At the end, the script calls
dataset.consolidate(run_compute_stats=False). If you require aggregated statistics, run it withrun_compute_stats=Trueor execute a separate stats job.
- Downloads last month
- 3,262