|
|
import argparse |
|
|
import os |
|
|
from tqdm import tqdm |
|
|
from diffusers import AutoencoderKLHunyuanVideo |
|
|
from transformers import ( |
|
|
CLIPTextModel, |
|
|
CLIPTokenizer, |
|
|
LlamaModel, |
|
|
LlamaTokenizerFast, |
|
|
SiglipImageProcessor, |
|
|
SiglipVisionModel, |
|
|
) |
|
|
from diffusers.video_processor import VideoProcessor |
|
|
from diffusers.utils import export_to_video, load_image |
|
|
|
|
|
from dummy_dataloader_official import BucketedFeatureDataset, BucketedSampler, collate_fn |
|
|
from torch.utils.data import DataLoader |
|
|
|
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
import torch.nn as nn |
|
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
from torch.utils.data.distributed import DistributedSampler |
|
|
from torch.utils.data import Subset |
|
|
import torchvision.transforms as transforms |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.animation import FuncAnimation |
|
|
from IPython.display import HTML, display |
|
|
from IPython.display import clear_output |
|
|
|
|
|
from accelerate import Accelerator, DistributedType |
|
|
from accelerate.logging import get_logger |
|
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed |
|
|
from diffusers.training_utils import free_memory |
|
|
|
|
|
from accelerate import Accelerator |
|
|
from utils_framepack import encode_image, encode_prompt |
|
|
|
|
|
def setup_distributed_env(): |
|
|
dist.init_process_group(backend="nccl") |
|
|
torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) |
|
|
|
|
|
def cleanup_distributed_env(): |
|
|
dist.destroy_process_group() |
|
|
|
|
|
def main(rank, world_size, global_rank, stride, batch_size, dataloader_num_workers, csv_file, video_folder, output_latent_folder, pretrained_model_name_or_path, siglip_model_name_or_path): |
|
|
weight_dtype = torch.bfloat16 |
|
|
device = rank |
|
|
seed = 42 |
|
|
|
|
|
|
|
|
tokenizer_one = LlamaTokenizerFast.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="tokenizer", |
|
|
) |
|
|
tokenizer_two = CLIPTokenizer.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="tokenizer_2", |
|
|
) |
|
|
feature_extractor = SiglipImageProcessor.from_pretrained( |
|
|
siglip_model_name_or_path, |
|
|
subfolder="feature_extractor", |
|
|
|
|
|
) |
|
|
|
|
|
vae = AutoencoderKLHunyuanVideo.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="vae", |
|
|
torch_dtype=torch.float32, |
|
|
) |
|
|
vae_scale_factor_spatial = vae.spatial_compression_ratio |
|
|
video_processor = VideoProcessor(vae_scale_factor=vae_scale_factor_spatial) |
|
|
|
|
|
text_encoder_one = LlamaModel.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="text_encoder", |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
text_encoder_two = CLIPTextModel.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="text_encoder_2", |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
image_encoder = SiglipVisionModel.from_pretrained( |
|
|
siglip_model_name_or_path, |
|
|
subfolder="image_encoder", |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
|
text_encoder_one.requires_grad_(False) |
|
|
text_encoder_two.requires_grad_(False) |
|
|
image_encoder.requires_grad_(False) |
|
|
vae.eval() |
|
|
text_encoder_one.eval() |
|
|
text_encoder_two.eval() |
|
|
image_encoder.eval() |
|
|
|
|
|
vae = vae.to(device) |
|
|
text_encoder_one = text_encoder_one.to(device) |
|
|
text_encoder_two = text_encoder_two.to(device) |
|
|
image_encoder = image_encoder.to(device) |
|
|
|
|
|
|
|
|
dataset = BucketedFeatureDataset(csv_file=csv_file, video_folder=video_folder, stride=stride, force_rebuild=True) |
|
|
sampler = BucketedSampler(dataset, batch_size=batch_size, drop_last=True, shuffle=True, seed=seed) |
|
|
dataloader = DataLoader( |
|
|
dataset, |
|
|
batch_sampler=sampler, |
|
|
collate_fn=collate_fn, |
|
|
num_workers=dataloader_num_workers, |
|
|
|
|
|
prefetch_factor=2 if dataloader_num_workers != 0 else None, |
|
|
|
|
|
) |
|
|
|
|
|
print(len(dataset), len(dataloader)) |
|
|
accelerator = Accelerator() |
|
|
dataloader = accelerator.prepare(dataloader) |
|
|
print(f"Dataset size: {len(dataset)}, Dataloader batches: {len(dataloader)}") |
|
|
print(f"Process index: {accelerator.process_index}, World size: {accelerator.num_processes}") |
|
|
|
|
|
sampler.set_epoch(0) |
|
|
if rank==0: |
|
|
pbar = tqdm(total=len(dataloader), desc="Processing") |
|
|
|
|
|
for idx, batch in enumerate(dataloader): |
|
|
free_memory() |
|
|
|
|
|
valid_indices = [] |
|
|
valid_uttids = [] |
|
|
valid_num_frames = [] |
|
|
valid_heights = [] |
|
|
valid_widths = [] |
|
|
valid_videos = [] |
|
|
valid_prompts = [] |
|
|
valid_first_frames_images = [] |
|
|
|
|
|
for i, (uttid, num_frame, height, width) in enumerate(zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"])): |
|
|
os.makedirs(output_latent_folder, exist_ok=True) |
|
|
output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt") |
|
|
if not os.path.exists(output_path): |
|
|
valid_indices.append(i) |
|
|
valid_uttids.append(uttid) |
|
|
valid_num_frames.append(num_frame) |
|
|
valid_heights.append(height) |
|
|
valid_widths.append(width) |
|
|
valid_videos.append(batch["videos"][i]) |
|
|
valid_prompts.append(batch["prompts"][i]) |
|
|
valid_first_frames_images.append(batch["first_frames_images"][i]) |
|
|
else: |
|
|
print(f"skipping {uttid}") |
|
|
|
|
|
if not valid_indices: |
|
|
print("skipping entire batch!") |
|
|
if rank==0: |
|
|
pbar.update(1) |
|
|
pbar.set_postfix({"batch": idx}) |
|
|
continue |
|
|
|
|
|
batch = None |
|
|
del batch |
|
|
free_memory() |
|
|
|
|
|
batch = { |
|
|
"uttid": valid_uttids, |
|
|
"video_metadata": { |
|
|
"num_frames": valid_num_frames, |
|
|
"height": valid_heights, |
|
|
"width": valid_widths |
|
|
}, |
|
|
"videos": torch.stack(valid_videos), |
|
|
"prompts": valid_prompts, |
|
|
"first_frames_images": torch.stack(valid_first_frames_images), |
|
|
} |
|
|
|
|
|
if len(batch["uttid"]) == 0: |
|
|
print("All samples in this batch are already processed, skipping!") |
|
|
continue |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
pixel_values = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=vae.dtype, device=device) |
|
|
vae_latents = vae.encode(pixel_values).latent_dist.sample() |
|
|
vae_latents = vae_latents * vae.config.scaling_factor |
|
|
|
|
|
|
|
|
prompts = batch["prompts"] |
|
|
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = encode_prompt( |
|
|
tokenizer=tokenizer_one, |
|
|
text_encoder=text_encoder_one, |
|
|
tokenizer_2=tokenizer_two, |
|
|
text_encoder_2=text_encoder_two, |
|
|
prompt=prompts, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
|
|
|
image_tensor = batch["first_frames_images"] |
|
|
images = [transforms.ToPILImage()(x.to(torch.uint8)) for x in image_tensor] |
|
|
image = video_processor.preprocess(image=images, height=batch["videos"].shape[-2], width=batch["videos"].shape[-1]) |
|
|
image_embeds = encode_image( |
|
|
feature_extractor, |
|
|
image_encoder, |
|
|
image, |
|
|
device=device, |
|
|
dtype=weight_dtype, |
|
|
) |
|
|
|
|
|
for uttid, num_frame, height, width, cur_vae_latent, cur_prompt_embed, cur_pooled_prompt_embed, cur_prompt_attention_mask, cur_image_embed in zip(batch["uttid"], batch["video_metadata"]["num_frames"], batch["video_metadata"]["height"], batch["video_metadata"]["width"], vae_latents, prompt_embeds, pooled_prompt_embeds, prompt_attention_mask, image_embeds): |
|
|
output_path = os.path.join(output_latent_folder, f"{uttid}_{num_frame}_{height}_{width}.pt") |
|
|
temp_to_save = { |
|
|
"vae_latent": cur_vae_latent.cpu().detach(), |
|
|
"prompt_embed": cur_prompt_embed.cpu().detach(), |
|
|
"pooled_prompt_embeds": cur_pooled_prompt_embed.cpu().detach(), |
|
|
"prompt_attention_mask": cur_prompt_attention_mask.cpu().detach(), |
|
|
"image_embeds": cur_image_embed.cpu().detach(), |
|
|
} |
|
|
torch.save( |
|
|
temp_to_save, |
|
|
output_path |
|
|
) |
|
|
print(f"save latent to: {output_path}") |
|
|
|
|
|
if rank==0: |
|
|
pbar.update(1) |
|
|
pbar.set_postfix({"batch": idx}) |
|
|
|
|
|
|
|
|
pixel_values = None |
|
|
prompts = None |
|
|
image_tensor = None |
|
|
images = None |
|
|
vae_latents = None |
|
|
vae_latents_2 = None |
|
|
image_embeds = None |
|
|
prompt_embeds = None |
|
|
pooled_prompt_embeds = None |
|
|
prompt_attention_mask = None |
|
|
batch = None |
|
|
valid_indices = None |
|
|
valid_uttids = None |
|
|
valid_num_frames = None |
|
|
valid_heights = None |
|
|
valid_widths = None |
|
|
valid_videos = None |
|
|
valid_prompts = None |
|
|
valid_first_frames_images = None |
|
|
temp_to_save = None |
|
|
|
|
|
del pixel_values |
|
|
del prompts |
|
|
del image_tensor |
|
|
del images |
|
|
del vae_latents |
|
|
del vae_latents_2 |
|
|
del image_embeds |
|
|
del batch |
|
|
del valid_indices |
|
|
del valid_uttids |
|
|
del valid_num_frames |
|
|
del valid_heights |
|
|
del valid_widths |
|
|
del valid_videos |
|
|
del valid_prompts |
|
|
del valid_first_frames_images |
|
|
del temp_to_save |
|
|
|
|
|
free_memory() |
|
|
|
|
|
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser(description="Script for running model training and data processing.") |
|
|
parser.add_argument("--stride", type=int, default=2, help="Batch size for processing") |
|
|
parser.add_argument("--batch_size", type=int, default=1, help="Batch size for processing") |
|
|
parser.add_argument("--dataloader_num_workers", type=int, default=0, help="Number of workers for data loading") |
|
|
parser.add_argument("--csv_file", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/Sekai-Project/train/sekai-game-drone_updated.csv", help="Path to the config file") |
|
|
parser.add_argument("--video_folder", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/Sekai-Project/sekai-game-drone", help="Path to the config file") |
|
|
parser.add_argument("--output_latent_folder", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/Lixsp11/Sekai-Project/sekai-game-drone/latents", help="Folder to store output latents") |
|
|
parser.add_argument("--pretrained_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/hunyuanvideo-community/HunyuanVideo", help="Pretrained model path") |
|
|
parser.add_argument("--siglip_model_name_or_path", type=str, default="/mnt/bn/yufan-dev-my/ysh/Ckpts/lllyasviel/flux_redux_bfl", help="Siglip model path") |
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
setup_distributed_env() |
|
|
|
|
|
global_rank = dist.get_rank() |
|
|
local_rank = int(os.environ["LOCAL_RANK"]) |
|
|
device = torch.cuda.current_device() |
|
|
world_size = dist.get_world_size() |
|
|
|
|
|
main( |
|
|
rank=device, |
|
|
world_size=world_size, |
|
|
global_rank=global_rank, |
|
|
stride=args.stride, |
|
|
batch_size=args.batch_size, |
|
|
dataloader_num_workers=args.dataloader_num_workers, |
|
|
csv_file=args.csv_file, |
|
|
video_folder=args.video_folder, |
|
|
output_latent_folder=args.output_latent_folder, |
|
|
pretrained_model_name_or_path=args.pretrained_model_name_or_path, |
|
|
siglip_model_name_or_path=args.siglip_model_name_or_path, |
|
|
) |