The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'BloodPressure', 'Glucose', 'BMI', 'DiabetesPedigreeFunction', 'Pregnancies', 'SkinThickness', 'Age', 'Insulin', 'Outcome'}) and 19 missing columns ({'opticdisc_diameter', 'ma2', 'class', 'exudate1', 'ma5', 'exudate3', 'am_fm_classification', 'quality', 'exudate6', 'exudate2', 'pre_screening', 'exudate7', 'macula_opticdisc_distance', 'exudate5', 'exudate8', 'ma1', 'ma3', 'ma6', 'ma4'}).
This happened while the csv dataset builder was generating data using
hf://datasets/TahaGorji/DiabetesDeepInsight-CSV/diabetes.csv (at revision 9d422f2308bc4875c80e4f5988016001a1a258d0)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Pregnancies: int64
Glucose: int64
BloodPressure: int64
SkinThickness: int64
Insulin: int64
BMI: double
DiabetesPedigreeFunction: double
Age: int64
Outcome: int64
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1318
to
{'quality': Value(dtype='int64', id=None), 'pre_screening': Value(dtype='int64', id=None), 'ma1': Value(dtype='int64', id=None), 'ma2': Value(dtype='int64', id=None), 'ma3': Value(dtype='int64', id=None), 'ma4': Value(dtype='int64', id=None), 'ma5': Value(dtype='int64', id=None), 'ma6': Value(dtype='int64', id=None), 'exudate1': Value(dtype='float64', id=None), 'exudate2': Value(dtype='float64', id=None), 'exudate3': Value(dtype='float64', id=None), 'exudate5': Value(dtype='float64', id=None), 'exudate6': Value(dtype='float64', id=None), 'exudate7': Value(dtype='float64', id=None), 'exudate8': Value(dtype='float64', id=None), 'macula_opticdisc_distance': Value(dtype='float64', id=None), 'opticdisc_diameter': Value(dtype='float64', id=None), 'am_fm_classification': Value(dtype='int64', id=None), 'class': Value(dtype='int64', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'BloodPressure', 'Glucose', 'BMI', 'DiabetesPedigreeFunction', 'Pregnancies', 'SkinThickness', 'Age', 'Insulin', 'Outcome'}) and 19 missing columns ({'opticdisc_diameter', 'ma2', 'class', 'exudate1', 'ma5', 'exudate3', 'am_fm_classification', 'quality', 'exudate6', 'exudate2', 'pre_screening', 'exudate7', 'macula_opticdisc_distance', 'exudate5', 'exudate8', 'ma1', 'ma3', 'ma6', 'ma4'}).
This happened while the csv dataset builder was generating data using
hf://datasets/TahaGorji/DiabetesDeepInsight-CSV/diabetes.csv (at revision 9d422f2308bc4875c80e4f5988016001a1a258d0)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
quality
int64 | pre_screening
int64 | ma1
int64 | ma2
int64 | ma3
int64 | ma4
int64 | ma5
int64 | ma6
int64 | exudate1
float64 | exudate2
float64 | exudate3
float64 | exudate5
float64 | exudate6
float64 | exudate7
float64 | exudate8
float64 | macula_opticdisc_distance
float64 | opticdisc_diameter
float64 | am_fm_classification
int64 | class
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 22 | 22 | 22 | 19 | 18 | 14 | 49.895756 | 17.775994 | 5.27092 | 0.018632 | 0.006864 | 0.003923 | 0.003923 | 0.486903 | 0.100025 | 1 | 0 |
1 | 1 | 24 | 24 | 22 | 18 | 16 | 13 | 57.709936 | 23.799994 | 3.325423 | 0.003903 | 0.003903 | 0.003903 | 0.003903 | 0.520908 | 0.144414 | 0 | 0 |
1 | 1 | 62 | 60 | 59 | 54 | 47 | 33 | 55.831441 | 27.993933 | 12.687485 | 1.393889 | 0.373252 | 0.041817 | 0.007744 | 0.530904 | 0.128548 | 0 | 1 |
1 | 1 | 55 | 53 | 53 | 50 | 43 | 31 | 40.467228 | 18.445954 | 9.118901 | 0.840261 | 0.272434 | 0.007653 | 0.001531 | 0.483284 | 0.11479 | 0 | 0 |
1 | 1 | 44 | 44 | 44 | 41 | 39 | 27 | 18.026254 | 8.570709 | 0.410381 | 0 | 0 | 0 | 0 | 0.475935 | 0.123572 | 0 | 1 |
1 | 1 | 44 | 43 | 41 | 41 | 37 | 29 | 28.3564 | 6.935636 | 2.305771 | 0 | 0 | 0 | 0 | 0.502831 | 0.126741 | 0 | 1 |
1 | 0 | 29 | 29 | 29 | 27 | 25 | 16 | 15.448398 | 9.113819 | 1.633493 | 0 | 0 | 0 | 0 | 0.541743 | 0.139575 | 0 | 1 |
1 | 1 | 6 | 6 | 6 | 6 | 2 | 1 | 20.679649 | 9.497786 | 1.22366 | 0 | 0 | 0 | 0 | 0.576318 | 0.071071 | 1 | 0 |
1 | 1 | 22 | 21 | 18 | 15 | 13 | 10 | 66.691933 | 23.545543 | 6.151117 | 0 | 0 | 0 | 0 | 0.500073 | 0.116793 | 0 | 1 |
1 | 1 | 79 | 75 | 73 | 71 | 64 | 47 | 22.141784 | 10.054384 | 0.874633 | 0.023386 | 0 | 0 | 0 | 0.560959 | 0.109134 | 0 | 1 |
1 | 1 | 45 | 45 | 45 | 43 | 40 | 32 | 84.358401 | 50.977459 | 17.293722 | 0 | 0 | 0 | 0 | 0.546008 | 0.112378 | 0 | 0 |
1 | 0 | 25 | 25 | 25 | 23 | 22 | 18 | 22.480047 | 13.949995 | 0.436232 | 0 | 0 | 0 | 0 | 0.551682 | 0.139657 | 1 | 0 |
1 | 1 | 70 | 69 | 65 | 63 | 63 | 50 | 10.5601 | 3.108358 | 0.625511 | 0.103985 | 0.004799 | 0 | 0 | 0.534396 | 0.089587 | 0 | 1 |
1 | 1 | 48 | 43 | 39 | 32 | 27 | 18 | 23.012798 | 6.737583 | 2.403903 | 0.011437 | 0 | 0 | 0 | 0.501554 | 0.138287 | 1 | 1 |
1 | 1 | 94 | 93 | 92 | 89 | 86 | 77 | 8.610822 | 1.981319 | 0.401183 | 0 | 0 | 0 | 0 | 0.541277 | 0.124505 | 0 | 0 |
1 | 1 | 20 | 18 | 16 | 15 | 13 | 9 | 65.113664 | 33.124797 | 8.785379 | 0.051811 | 0.002933 | 0.000978 | 0.000978 | 0.569458 | 0.089936 | 1 | 0 |
1 | 1 | 105 | 95 | 81 | 66 | 46 | 32 | 123.053484 | 70.57101 | 37.409891 | 14.786668 | 6.114911 | 2.34574 | 1.002243 | 0.524461 | 0.134247 | 1 | 1 |
1 | 1 | 25 | 25 | 24 | 23 | 22 | 19 | 17.03406 | 9.976938 | 1.067243 | 0.46779 | 0.306697 | 0.188975 | 0.130114 | 0.552002 | 0.108428 | 0 | 0 |
1 | 1 | 64 | 64 | 63 | 58 | 55 | 40 | 19.673459 | 6.064866 | 0.907342 | 0 | 0 | 0 | 0 | 0.551182 | 0.098591 | 0 | 0 |
1 | 0 | 46 | 41 | 39 | 32 | 23 | 15 | 115.533777 | 21.293312 | 9.665742 | 0.329396 | 0.186 | 0.118458 | 0.071698 | 0.540472 | 0.104949 | 1 | 1 |
1 | 1 | 37 | 37 | 37 | 34 | 31 | 23 | 61.357614 | 35.165912 | 8.114027 | 0.178499 | 0.010772 | 0 | 0 | 0.478189 | 0.110793 | 0 | 0 |
1 | 1 | 19 | 17 | 15 | 12 | 12 | 7 | 179.703958 | 34.678202 | 13.018953 | 0.023003 | 0.005001 | 0.002 | 0 | 0.470425 | 0.094014 | 1 | 1 |
1 | 0 | 37 | 34 | 31 | 30 | 28 | 24 | 8.818234 | 3.161544 | 1.900918 | 1.29287 | 0.165831 | 0 | 0 | 0.538223 | 0.09827 | 0 | 1 |
1 | 1 | 10 | 10 | 9 | 9 | 9 | 6 | 72.938941 | 20.285362 | 9.793215 | 0.040814 | 0 | 0 | 0 | 0.528929 | 0.108156 | 1 | 0 |
1 | 1 | 5 | 5 | 5 | 5 | 4 | 3 | 133.054234 | 6.890885 | 2.718365 | 0.01794 | 0.011608 | 0.003166 | 0.001055 | 0.588627 | 0.109748 | 1 | 1 |
1 | 1 | 40 | 38 | 33 | 25 | 20 | 12 | 73.082699 | 23.121256 | 13.093588 | 3.845287 | 2.028783 | 0.518568 | 0.10715 | 0.527112 | 0.105129 | 1 | 1 |
1 | 1 | 55 | 53 | 51 | 47 | 39 | 26 | 71.337302 | 39.430203 | 21.117569 | 0.636703 | 0.032852 | 0 | 0 | 0.540769 | 0.117329 | 0 | 0 |
1 | 1 | 99 | 98 | 68 | 53 | 42 | 27 | 298.06851 | 50.269654 | 33.693698 | 6.124441 | 1.748958 | 0.358444 | 0.181282 | 0.556481 | 0.117421 | 1 | 1 |
1 | 1 | 45 | 45 | 45 | 43 | 37 | 24 | 35.173512 | 15.421144 | 5.206171 | 0.371425 | 0.017095 | 0 | 0 | 0.543355 | 0.11811 | 0 | 0 |
1 | 1 | 103 | 89 | 83 | 71 | 60 | 38 | 11.025085 | 3.762343 | 0.015592 | 0.003118 | 0.003118 | 0.001559 | 0.001559 | 0.488566 | 0.134091 | 0 | 1 |
1 | 1 | 12 | 12 | 11 | 11 | 10 | 8 | 31.303995 | 2.021039 | 0.310613 | 0 | 0 | 0 | 0 | 0.566789 | 0.096681 | 1 | 0 |
1 | 1 | 42 | 38 | 38 | 37 | 35 | 32 | 12.494963 | 4.42648 | 0.588359 | 0 | 0 | 0 | 0 | 0.561081 | 0.099592 | 0 | 1 |
1 | 1 | 107 | 98 | 77 | 63 | 47 | 28 | 199.429033 | 44.82088 | 25.534925 | 0.242466 | 0.011447 | 0.003122 | 0.002081 | 0.49131 | 0.138403 | 1 | 1 |
1 | 1 | 9 | 9 | 9 | 9 | 8 | 5 | 196.172269 | 36.529744 | 18.431154 | 0.05935 | 0 | 0 | 0 | 0.5215 | 0.108467 | 0 | 0 |
1 | 1 | 64 | 64 | 62 | 53 | 50 | 31 | 30.775909 | 14.45127 | 3.074836 | 0.156114 | 0.071935 | 0 | 0 | 0.471605 | 0.099484 | 0 | 1 |
1 | 0 | 30 | 30 | 30 | 29 | 27 | 21 | 5.16331 | 0.846716 | 0.003019 | 0 | 0 | 0 | 0 | 0.498254 | 0.125272 | 0 | 0 |
1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 47.930183 | 6.587595 | 1.470575 | 0.002068 | 0 | 0 | 0 | 0.519195 | 0.114792 | 1 | 1 |
1 | 1 | 72 | 68 | 67 | 62 | 54 | 38 | 25.33878 | 10.490842 | 3.395 | 0.061476 | 0.001537 | 0 | 0 | 0.490344 | 0.115267 | 0 | 1 |
1 | 1 | 43 | 42 | 42 | 39 | 37 | 27 | 39.211044 | 18.275524 | 3.939161 | 0.018209 | 0.009104 | 0.00607 | 0.004552 | 0.47098 | 0.121392 | 0 | 0 |
1 | 0 | 16 | 16 | 16 | 13 | 10 | 8 | 45.545822 | 22.493089 | 4.828992 | 0.433024 | 0.263874 | 0.029964 | 0.010632 | 0.510826 | 0.123721 | 0 | 1 |
1 | 1 | 76 | 74 | 72 | 72 | 66 | 42 | 23.311611 | 7.943621 | 2.067625 | 0.139197 | 0.059432 | 0 | 0 | 0.533349 | 0.092277 | 0 | 1 |
1 | 1 | 5 | 5 | 5 | 5 | 4 | 2 | 69.552393 | 31.66465 | 13.057079 | 0 | 0 | 0 | 0 | 0.502259 | 0.109015 | 0 | 0 |
1 | 1 | 44 | 43 | 42 | 41 | 39 | 27 | 173.757198 | 38.295535 | 21.430906 | 3.135307 | 1.043 | 0.17138 | 0.080959 | 0.520223 | 0.114604 | 1 | 1 |
1 | 1 | 13 | 12 | 11 | 9 | 8 | 6 | 2.126707 | 0.337744 | 0 | 0 | 0 | 0 | 0 | 0.493133 | 0.135714 | 0 | 0 |
1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 78.557051 | 20.402173 | 5.151197 | 0.034114 | 0 | 0 | 0 | 0.506806 | 0.114747 | 1 | 0 |
1 | 1 | 37 | 35 | 34 | 30 | 28 | 22 | 20.993883 | 11.376063 | 0.981876 | 0 | 0 | 0 | 0 | 0.520133 | 0.123305 | 0 | 1 |
1 | 1 | 64 | 62 | 60 | 58 | 51 | 43 | 42.140207 | 20.794294 | 7.617959 | 0.137514 | 0 | 0 | 0 | 0.485808 | 0.087509 | 0 | 1 |
1 | 1 | 7 | 7 | 7 | 7 | 7 | 4 | 37.238886 | 17.444478 | 2.888475 | 0.034375 | 0.008594 | 0.005729 | 0.003819 | 0.499921 | 0.148959 | 0 | 0 |
1 | 1 | 42 | 42 | 37 | 36 | 35 | 26 | 79.513425 | 58.724897 | 2.791295 | 0.216964 | 0.167724 | 0.144643 | 0 | 0.558575 | 0.166185 | 0 | 1 |
1 | 1 | 15 | 15 | 14 | 12 | 10 | 9 | 70.413923 | 40.163401 | 11.161267 | 0.317158 | 0.011568 | 0.005784 | 0.000964 | 0.424173 | 0.120501 | 1 | 0 |
1 | 1 | 22 | 22 | 20 | 19 | 16 | 13 | 7.666737 | 2.188929 | 0.161388 | 0 | 0 | 0 | 0 | 0.528319 | 0.159822 | 0 | 0 |
1 | 1 | 33 | 33 | 33 | 32 | 32 | 31 | 4.645313 | 0.233589 | 0.003115 | 0 | 0 | 0 | 0 | 0.515357 | 0.099665 | 1 | 1 |
1 | 1 | 19 | 19 | 18 | 16 | 12 | 11 | 32.664999 | 13.682969 | 4.325823 | 0.107486 | 0.04104 | 0.003909 | 0.003909 | 0.505168 | 0.104555 | 0 | 0 |
1 | 1 | 12 | 12 | 12 | 12 | 10 | 7 | 60.619638 | 25.412079 | 4.447385 | 0.011826 | 0 | 0 | 0 | 0.507336 | 0.115299 | 1 | 0 |
1 | 1 | 49 | 48 | 45 | 40 | 37 | 26 | 26.347993 | 13.666809 | 2.556415 | 0 | 0 | 0 | 0 | 0.557765 | 0.113308 | 0 | 1 |
1 | 1 | 107 | 97 | 89 | 73 | 61 | 39 | 46.898288 | 26.625319 | 11.290695 | 5.258325 | 3.758994 | 2.169764 | 1.330199 | 0.511867 | 0.097517 | 0 | 1 |
1 | 1 | 22 | 19 | 19 | 15 | 12 | 9 | 70.192324 | 24.971335 | 4.403699 | 0.394666 | 0.207558 | 0.089976 | 0.039876 | 0.518668 | 0.098155 | 1 | 1 |
1 | 1 | 15 | 15 | 14 | 14 | 11 | 9 | 120.037514 | 55.14125 | 9.176269 | 0.007691 | 0.004807 | 0.004807 | 0.003845 | 0.514624 | 0.085562 | 0 | 0 |
1 | 1 | 56 | 55 | 46 | 41 | 37 | 28 | 6.960789 | 2.747318 | 1.544124 | 0.201806 | 0.160528 | 0.133009 | 0.11772 | 0.522871 | 0.102432 | 1 | 1 |
1 | 0 | 7 | 7 | 7 | 7 | 6 | 4 | 172.825204 | 76.289701 | 17.212219 | 0.012138 | 0 | 0 | 0 | 0.512196 | 0.142626 | 1 | 1 |
1 | 1 | 31 | 31 | 29 | 28 | 25 | 15 | 45.711634 | 21.604391 | 3.893095 | 0.023916 | 0.00104 | 0 | 0 | 0.488219 | 0.110221 | 0 | 1 |
1 | 1 | 24 | 24 | 23 | 21 | 19 | 15 | 96.599355 | 36.501107 | 10.878852 | 0.005772 | 0.003848 | 0 | 0 | 0.527487 | 0.105825 | 0 | 0 |
1 | 1 | 18 | 18 | 18 | 17 | 15 | 9 | 72.630707 | 25.142031 | 10.053525 | 0.26608 | 0.019519 | 0 | 0 | 0.553314 | 0.093488 | 0 | 1 |
1 | 1 | 14 | 14 | 14 | 14 | 12 | 9 | 125.731993 | 48.659028 | 16.775043 | 0.00595 | 0.00595 | 0.00595 | 0.00595 | 0.55084 | 0.111073 | 1 | 0 |
1 | 1 | 101 | 87 | 73 | 60 | 42 | 24 | 145.799804 | 15.768882 | 6.647874 | 0.004039 | 0 | 0 | 0 | 0.568974 | 0.064631 | 0 | 1 |
1 | 1 | 19 | 19 | 15 | 15 | 15 | 11 | 3.332213 | 0.302928 | 0.054801 | 0 | 0 | 0 | 0 | 0.519713 | 0.118736 | 1 | 1 |
1 | 1 | 61 | 60 | 58 | 57 | 54 | 42 | 32.028807 | 12.793278 | 3.658368 | 0.023592 | 0.020447 | 0.014155 | 0.006291 | 0.575902 | 0.102233 | 0 | 0 |
1 | 1 | 56 | 55 | 54 | 51 | 46 | 31 | 41.15413 | 19.139912 | 8.664596 | 0.004631 | 0 | 0 | 0 | 0.487138 | 0.120406 | 0 | 1 |
1 | 1 | 51 | 50 | 48 | 42 | 37 | 22 | 110.644051 | 54.594325 | 12.291867 | 0.100604 | 0.027786 | 0.003833 | 0.003833 | 0.530484 | 0.10252 | 1 | 1 |
1 | 1 | 73 | 71 | 71 | 70 | 70 | 65 | 44.343736 | 29.424664 | 6.624892 | 0.056873 | 0 | 0 | 0 | 0.534769 | 0.079929 | 0 | 0 |
1 | 1 | 66 | 65 | 65 | 64 | 63 | 53 | 11.103445 | 4.009015 | 0.397164 | 0.076318 | 0.052955 | 0.035823 | 0.01869 | 0.543196 | 0.096565 | 0 | 1 |
1 | 1 | 17 | 16 | 16 | 16 | 12 | 10 | 54.483137 | 14.79985 | 3.203629 | 0.01462 | 0.003899 | 0 | 0 | 0.522769 | 0.081869 | 1 | 0 |
1 | 1 | 56 | 55 | 55 | 51 | 47 | 36 | 36.371217 | 10.641034 | 2.563113 | 0.016762 | 0 | 0 | 0 | 0.525089 | 0.057906 | 0 | 1 |
1 | 1 | 66 | 62 | 61 | 61 | 57 | 44 | 42.595095 | 20.475159 | 2.783822 | 0.498044 | 0.215204 | 0 | 0 | 0.527952 | 0.086082 | 0 | 0 |
1 | 1 | 70 | 64 | 61 | 54 | 51 | 34 | 29.073507 | 9.481386 | 4.487734 | 0.172195 | 0.051811 | 0.006095 | 0.001524 | 0.489025 | 0.091431 | 0 | 1 |
1 | 1 | 43 | 42 | 42 | 40 | 39 | 34 | 21.612661 | 9.669272 | 0.903438 | 0.128841 | 0.082272 | 0.066749 | 0.058987 | 0.541183 | 0.099347 | 0 | 1 |
1 | 1 | 39 | 39 | 36 | 35 | 30 | 27 | 66.289899 | 18.410266 | 9.29063 | 0.118617 | 0.012324 | 0.010783 | 0.003081 | 0.502645 | 0.09551 | 0 | 0 |
1 | 1 | 25 | 24 | 24 | 22 | 21 | 15 | 51.246256 | 23.520502 | 5.945784 | 0 | 0 | 0 | 0 | 0.517687 | 0.149189 | 0 | 0 |
1 | 1 | 19 | 18 | 17 | 14 | 13 | 8 | 47.000422 | 28.290417 | 12.426334 | 0.086458 | 0 | 0 | 0 | 0.532509 | 0.086458 | 1 | 0 |
1 | 1 | 34 | 34 | 28 | 22 | 17 | 9 | 80.102809 | 35.595044 | 7.515836 | 0.25993 | 0.216609 | 0.184839 | 0.003851 | 0.515703 | 0.095308 | 0 | 1 |
1 | 1 | 95 | 83 | 81 | 73 | 62 | 42 | 40.186635 | 17.350155 | 10.183585 | 1.325939 | 0.411552 | 0.034038 | 0.004642 | 0.478644 | 0.092831 | 0 | 1 |
1 | 1 | 17 | 17 | 17 | 17 | 17 | 10 | 22.690652 | 6.918374 | 1.165543 | 0.013441 | 0.005761 | 0.005761 | 0.0048 | 0.499478 | 0.097929 | 0 | 0 |
1 | 1 | 54 | 54 | 54 | 53 | 51 | 41 | 14.512332 | 7.266234 | 0.597904 | 0 | 0 | 0 | 0 | 0.491181 | 0.116173 | 0 | 1 |
1 | 1 | 60 | 56 | 46 | 37 | 29 | 19 | 247.798988 | 55.343818 | 32.199603 | 3.642385 | 1.822757 | 1.132445 | 0.313873 | 0.489107 | 0.077165 | 0 | 1 |
1 | 1 | 34 | 33 | 27 | 21 | 16 | 9 | 13.273712 | 4.294346 | 1.511429 | 0.192774 | 0.107666 | 0.003076 | 0 | 0.574559 | 0.086133 | 0 | 1 |
1 | 1 | 52 | 51 | 51 | 50 | 48 | 34 | 22.951977 | 10.029318 | 4.423472 | 0.054096 | 0.023184 | 0 | 0 | 0.497064 | 0.100463 | 0 | 0 |
1 | 1 | 22 | 20 | 16 | 13 | 10 | 7 | 87.69468 | 36.084155 | 15.664896 | 0 | 0 | 0 | 0 | 0.524302 | 0.086838 | 1 | 1 |
1 | 1 | 35 | 35 | 34 | 30 | 27 | 21 | 20.224045 | 10.671793 | 0.937143 | 0 | 0 | 0 | 0 | 0.528512 | 0.100633 | 0 | 1 |
1 | 1 | 11 | 11 | 9 | 9 | 8 | 5 | 13.935559 | 6.857066 | 2.138412 | 0.675558 | 0.435678 | 0.333166 | 0.041005 | 0.523698 | 0.108663 | 0 | 1 |
1 | 1 | 15 | 14 | 14 | 14 | 13 | 8 | 24.963152 | 1.112323 | 0.202241 | 0 | 0 | 0 | 0 | 0.518514 | 0.097993 | 0 | 1 |
1 | 1 | 35 | 34 | 33 | 31 | 23 | 14 | 64.555398 | 32.798346 | 12.322802 | 2.101132 | 1.0735 | 0.324978 | 0.126868 | 0.568962 | 0.089784 | 1 | 0 |
1 | 1 | 79 | 74 | 69 | 64 | 57 | 37 | 31.73432 | 3.922031 | 1.132117 | 0 | 0 | 0 | 0 | 0.490258 | 0.111231 | 0 | 1 |
1 | 1 | 63 | 62 | 62 | 58 | 53 | 42 | 42.29046 | 19.897005 | 10.561198 | 0.40339 | 0.085245 | 0 | 0 | 0.468996 | 0.097422 | 0 | 1 |
1 | 1 | 11 | 11 | 11 | 11 | 10 | 9 | 78.775093 | 45.688227 | 17.21856 | 0.008165 | 0 | 0 | 0 | 0.540203 | 0.082669 | 1 | 0 |
1 | 1 | 45 | 40 | 34 | 30 | 19 | 12 | 123.298724 | 39.026421 | 20.514816 | 4.346491 | 1.503958 | 1.030547 | 0.474445 | 0.528052 | 0.112668 | 1 | 1 |
1 | 1 | 29 | 29 | 27 | 25 | 21 | 18 | 90.97488 | 49.911174 | 23.987895 | 0.751442 | 0.158978 | 0.014812 | 0.006912 | 0.487065 | 0.115531 | 0 | 0 |
1 | 1 | 58 | 57 | 56 | 56 | 54 | 43 | 52.80355 | 31.473528 | 5.661383 | 0.017227 | 0 | 0 | 0 | 0.491265 | 0.076738 | 0 | 1 |
1 | 1 | 24 | 24 | 22 | 22 | 19 | 15 | 89.107549 | 60.484696 | 20.952812 | 0.073661 | 0 | 0 | 0 | 0.505949 | 0.084035 | 1 | 0 |
1 | 1 | 49 | 48 | 48 | 47 | 45 | 39 | 30.842267 | 13.341782 | 3.718794 | 0.036135 | 0 | 0 | 0 | 0.514957 | 0.102122 | 0 | 0 |
1 | 1 | 11 | 10 | 10 | 6 | 5 | 5 | 104.72803 | 31.381846 | 7.475142 | 0.029167 | 0 | 0 | 0 | 0.563954 | 0.126044 | 1 | 1 |
DiabetesDeepInsight-CSV
A comprehensive, multi-source CSV collection for Type 2 Diabetes prediction, combining clinical indicators and retinopathy features. Ideal for researchers and practitioners in medical AI and data science.
🚀 Highlights
- Multi-Dataset Fusion: Integrates Pima Indians, BRFSS surveys, and Retinopathy Debrecen—over 300,000 records in total.
- Clinical & Retinopathy Features: Blood tests, demographics, lifestyle factors, and retinal image–derived biomarkers.
- Balanced & Stratified: Includes 50/50 splits, three-class→binary conversions, and curated train/test splits.
- Plug‐and‐Play CSVs: Ready for immediate ingestion with popular ML frameworks (scikit-learn, XGBoost, PyTorch).
📂 Included Files
diabetes.csv
Pima Indians Diabetes Database (8 clinical features + Outcome).diabetes_data_upload.csv
Alternate Pima format, ensuring consistency for cross-validation.diabetes_binary_health_indicators_BRFSS2015.csv
CDC BRFSS 2015 health survey (binary diabetes flag, demographics, labs).diabetes_binary_5050split_health_indicators_BRFSS2015.csv
Balanced 50/50 subset of BRFSS 2015 (equal cases/controls).diabetes_012_health_indicators_BRFSS2015.csv
BRFSS 2015 three-class (“No”, “Pre-diabetes”, “Diabetes”) converted to binary.Retinopathy_Debrecen.csv
Tabular features from EyePACS retinal exams (0/1 retinopathy → proxy for diabetes).diabetic_data.csv
(Optional) 130-US Hospitals clinical records—can be extended for readmission or ICD-9-based diabetes flags.
✨ Key Features
Rich Clinical Indicators
- Age, BMI, blood pressure, insulin, lipid profiles, lifestyle habits (smoking, activity), etc.
Retinopathy-Derived Biomarkers
- Vessel diameter, hemorrhage counts, texture features—ideal for image-to-CSV pipelines.
Preprocessed & Label-Aligned
- Unified
Outcomecolumn (0 = No Diabetes, 1 = Type 2 Diabetes) across all CSVs.
- Unified
Unlock deeper insights and achieve >95% accuracy with integrated clinical & retinopathy features! 🎉
- Downloads last month
- 7