Dataset Viewer (First 5GB)
Auto-converted to Parquet
The dataset viewer is not available for this split.
Rows from parquet row groups are too big to be read: 742.66 MiB (max=286.10 MiB)
Error code:   TooBigContentError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

GSM8K-V Logo

GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts?


Fan Yuan1,*, Yuchen Yan1,*, Yifan Jiang1, Haoran Zhao1, Tao Feng1, Jinyan Chen1, Yanwei Lou1,
Wenqi Zhang1, Yongliang Shen1,†, Weiming Lu1, Jun Xiao1, Yueting Zhuang1

1Zhejiang University
*Equal contribution, †Corresponding author

πŸ’» Github | πŸ€— Dataset | πŸ€— Hf-Paper | πŸ“ Arxiv | 🌐 ProjectPage

GSM8K-V Pipeline

πŸ”” News

  • πŸ”₯ 2025.09.30: Paper is released! πŸš€
  • πŸ”₯ 2025.09.28: Code for evaluation is available! πŸš€
  • πŸ”₯ 2025.09.28: Home page is available. 🌟

πŸ‘οΈ Overview

GSM8K-V Pipeline

GSM8K-V is a purely visual multi-image mathematical reasoning benchmark that systematically maps each GSM8K math word problem into its visual counterpart to enable a clean, within-item comparison across modalities. Built via an automated pipeline that extracts and allocates problem information across scenes, generates scene-level descriptions, and renders images, coupled with meticulous human annotation, the benchmark comprises 1,319 high-quality multiscene problems (5,343 images) and addresses limitations of prior visual math evaluations that predominantly focus on geometry, seldom cover visualized word problems, and rarely test reasoning across multiple images with semantic dependencies. Evaluations of a broad range of open- and closed-source models reveal a substantial modality gapβ€”for example, Gemini-2.5-Pro attains 95.22% accuracy on text-based GSM8K but only 46.93% on GSM8K-Vβ€”highlighting persistent challenges in understanding and reasoning over images in realistic scenarios and providing a foundation to guide the development of more robust and generalizable vision-language models.

Our main contributions are summarized as follows.

  • We propose an automated framework that converts text-based math word problems into visual form. Specifically, we construct detailed multi-scene textual descriptions and leverage image generation models to produce corresponding visual representations.
  • Building on the proposed data construction framework and careful human annotation, we introduce a vision-based mathematical reasoning benchmark GSM8K-V, which enables the evaluation of VLMs on more realistic mathematical problem-solving scenarios.
  • We perform a thorough evaluation and analysis of the existing VLMs in GSM8K-V. The results reveal substantial room for improvement, and our analysis provides valuable insights for enhancing the mathematical reasoning capabilities of future VLMs.

πŸš€ Sample Usage

# Clone the repository
git clone https://github.com/ZJU-REAL/GSM8K-V.git
cd GSM8K-V

# Create conda environment (optional)
conda create -n gsm8k-v python=3.10
conda activate gsm8k-v

# Install dependencies
pip install -r requirements.txt

# Command for vllm mode
python eval.py --type vllm \
--model_name <eval_model_name> --api_base <vllm_api_base> \
--concurrency <eval_parallel_num> --image_dir <data_path>

# Command for api mode
python eval.py --type api \
--model_name <eval_model_name> --api_key <your_api_key> \ 
--concurrency <eval_parallel_num> --image_dir <data_path>

πŸ“Š Benchmark Statistics

Dataset Statistics Category Distribution

πŸ“ˆ Main Results

Main Result

βš™οΈ Advanced Configuration Options

# Limit number of samples
python eval.py --num-samples 5

# Specify evaluation modes
python eval.py --modes text_only visual scene

# Specify prompt modes for visual evaluation
python eval.py --prompt-modes implicit explicit

# Evaluate only specific categories
python eval.py --data-categories measurement physical_metric

# Evaluate specific subcategories
python eval.py --data-subcategories distance speed weight

# Example Use
# ---- vllm start ----
vllm serve model/internvl3_5-8b \
  --port 8010 \
  --tensor-parallel-size 4 \
  --gpu-memory-utilization 0.9 \
  --max-model-len 8192 \
  --trust-remote-code \
  --served-model-name "internvl3.5-8b"

# ---- eval start ----
python eval.py --type vllm \
  --model_name internvl3.5-8b --api_base http://localhost:8010/v1 \
  --concurrency 32 --image_dir data/images

# For detailed help
python eval.py --help

πŸ“ Citation

If you find our work helpful, feel free to give us a cite.

@misc{yuan2025gsm8kvvisionlanguagemodels,
      title={GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts}, 
      author={Fan Yuan and Yuchen Yan and Yifan Jiang and Haoran Zhao and Tao Feng and Jinyan Chen and Yanwei Lou and Wenqi Zhang and Yongliang Shen and Weiming Lu and Jun Xiao and Yueting Zhuang},
      year={2025},
      eprint={2509.25160},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2509.25160}, 
}

βœ‰οΈ Contact Us

If you have any questions, please contact us by email: yuanfan7777777@gmail.com

Downloads last month
3,299