Dataset Viewer
Auto-converted to Parquet Duplicate
Model_name
string
Train_size
int64
Test_size
int64
arg
dict
lora
null
Parameters
int64
Trainable_parameters
int64
r
null
Memory Allocation
string
Training Time
string
Performance
dict
google-t5/t5-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
738,731,021
738,731,021
null
7375.84
1537.37
{ "accuracy": 0.9052323743281695, "f1_macro": 0.9013383020683862, "f1_weighted": 0.9054479602946873, "precision": 0.9022590107045835, "recall": 0.9006419800608593 }
RUCAIBox/mvp
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,356,429
407,356,429
null
4020.82
792.58
{ "accuracy": 0.902782168827063, "f1_macro": 0.8984511371599229, "f1_weighted": 0.9029306955968787, "precision": 0.8991251858933664, "recall": 0.8980192081833427 }
facebook/bart-large-mnli
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,354,381
407,354,381
null
3802.02
753.74
{ "accuracy": 0.9034935188112552, "f1_macro": 0.8993653479985605, "f1_weighted": 0.9036737653282353, "precision": 0.8999061312461678, "recall": 0.8990265892986149 }
google/flan-t5-base
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
223,504,141
223,504,141
null
3021.62
843.62
{ "accuracy": 0.8942459690167562, "f1_macro": 0.8890799745949748, "f1_weighted": 0.8943831395036189, "precision": 0.8901872032400588, "recall": 0.8881740747405792 }
facebook/bart-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,354,381
407,354,381
null
3852.37
761.91
{ "accuracy": 0.9035725576983876, "f1_macro": 0.8988251057596799, "f1_weighted": 0.9038110012738504, "precision": 0.8998869801912316, "recall": 0.8981101341905647 }
FacebookAI/roberta-base
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
124,655,629
124,655,629
null
2059.77
240.64
{ "accuracy": 0.8910844135314575, "f1_macro": 0.8854480532471855, "f1_weighted": 0.89111636453489, "precision": 0.8865684564931843, "recall": 0.8845284091868102 }
google-bert/bert-base-uncased
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
109,492,237
109,492,237
null
1174.0
239.07
{ "accuracy": 0.8925861523869744, "f1_macro": 0.8884670370416861, "f1_weighted": 0.8927434196774904, "precision": 0.8894476885442704, "recall": 0.887771950922641 }
google/rembert
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
575,935,373
575,935,373
null
5313.94
929.52
{ "accuracy": 0.9016756244072084, "f1_macro": 0.8980959690011386, "f1_weighted": 0.9019092188725625, "precision": 0.8995002934922369, "recall": 0.8970123334894192 }
FacebookAI/xlm-roberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
559,903,757
559,903,757
null
5961.86
634.22
{ "accuracy": 0.8989092633575719, "f1_macro": 0.8944985914086196, "f1_weighted": 0.8991340288782671, "precision": 0.8951417860849619, "recall": 0.8942740325327818 }
FacebookAI/roberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
355,373,069
355,373,069
null
3342.35
610.48
{ "accuracy": 0.8980398355991147, "f1_macro": 0.8939876034698826, "f1_weighted": 0.8982815154877998, "precision": 0.8938544565380185, "recall": 0.8945658739294429 }
google-bert/bert-large-uncased
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
335,155,213
335,155,213
null
3102.98
611.5
{ "accuracy": 0.8946411634524186, "f1_macro": 0.8902450938100885, "f1_weighted": 0.8949261744250797, "precision": 0.8916197995679069, "recall": 0.8893450540850714 }
answerdotai/ModernBERT-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
395,844,621
395,844,621
null
3838.76
707.87
{ "accuracy": 0.874486247233639, "f1_macro": 0.8655635850850784, "f1_weighted": 0.8746576186428053, "precision": 0.866043951439592, "recall": 0.865388449241492 }
microsoft/deberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
406,225,933
406,225,933
null
4623.97
1046.79
{ "accuracy": 0.9013594688586785, "f1_macro": 0.8972469158394862, "f1_weighted": 0.9015860784281406, "precision": 0.897239329011824, "recall": 0.8975236121194432 }
albert/albert-xxlarge-v2
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
222,648,845
222,648,845
null
5295.56
2968.8
{ "accuracy": 0.9044419854568447, "f1_macro": 0.899875329648251, "f1_weighted": 0.9046316917695428, "precision": 0.9000605679613464, "recall": 0.8998927286198609 }
README.md exists but content is empty.
Downloads last month
5