Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
471
# Minimal makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build SOURCEDIR = source BUILDDIR = _build # Put it first so that "make" without argument is like "make help". help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) .PHONY: help Makefile # Catch-all target: route all unknown targets to Sphinx using the new # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). %: Makefile @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
accelerate/docs/Makefile/0
{ "file_path": "accelerate/docs/Makefile", "repo_id": "accelerate", "token_count": 237 }
0
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Comparing performance between different device setups Evaluating and comparing the performance from different setups can be quite tricky if you don't know what to look for. For example, you cannot run the same script with the same batch size across TPU, multi-GPU, and single-GPU with Accelerate and expect your results to line up. But why? There are three reasons for this that this tutorial will cover: 1. **Setting the right seeds** 2. **Observed Batch Sizes** 3. **Learning Rates** ## Setting the Seed While this issue has not come up as much, make sure to use [`utils.set_seed`] to fully set the seed in all distributed cases so training will be reproducible: ```python from accelerate.utils import set_seed set_seed(42) ``` Why is this important? Under the hood this will set **5** different seed settings: ```python random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # ^^ safe to call this function even if cuda is not available if is_torch_xla_available(): xm.set_rng_state(seed) ``` The random state, numpy's state, torch, torch's cuda state, and if TPUs are available torch_xla's cuda state. ## Observed Batch Sizes When training with Accelerate, the batch size passed to the dataloader is the **batch size per GPU**. What this entails is a batch size of 64 on two GPUs is truly a batch size of 128. As a result, when testing on a single GPU this needs to be accounted for, as well as similarly for TPUs. The below table can be used as a quick reference to try out different batch sizes: <Tip> In this example, there are two GPUs for "Multi-GPU" and a TPU pod with 8 workers </Tip> | Single GPU Batch Size | Multi-GPU Equivalent Batch Size | TPU Equivalent Batch Size | |-----------------------|---------------------------------|---------------------------| | 256 | 128 | 32 | | 128 | 64 | 16 | | 64 | 32 | 8 | | 32 | 16 | 4 | ## Learning Rates As noted in multiple sources[[1](https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-deep-learning-training-using-gpus-in-the-aws-cloud/)][[2](https://docs.nvidia.com/clara/clara-train-sdk/pt/model.html#classification-models-multi-gpu-training)], the learning rate should be scaled *linearly* based on the number of devices present. The below snippet shows doing so with Accelerate: <Tip> Since users can have their own learning rate schedulers defined, we leave this up to the user to decide if they wish to scale their learning rate or not. </Tip> ```python learning_rate = 1e-3 accelerator = Accelerator() learning_rate *= accelerator.num_processes optimizer = AdamW(params=model.parameters(), lr=learning_rate) ``` You will also find that `accelerate` will step the learning rate based on the number of processes being trained on. This is because of the observed batch size noted earlier. So in the case of 2 GPUs, the learning rate will be stepped twice as often as a single GPU to account for the batch size being twice as large (if no changes to the batch size on the single GPU instance are made). ## Gradient Accumulation and Mixed Precision When using gradient accumulation and mixed precision, due to how gradient averaging works (accumulation) and the precision loss (mixed precision), some degradation in performance is expected. This will be explicitly seen when comparing the batch-wise loss between different compute setups. However, the overall loss, metric, and general performance at the end of training should be _roughly_ the same.
accelerate/docs/source/concept_guides/performance.md/0
{ "file_path": "accelerate/docs/source/concept_guides/performance.md", "repo_id": "accelerate", "token_count": 1463 }
1
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Wrapper classes for torch Dataloaders, Optimizers, and Schedulers The internal classes Accelerate uses to prepare objects for distributed training when calling [`~Accelerator.prepare`]. ## Datasets and DataLoaders [[autodoc]] data_loader.prepare_data_loader [[autodoc]] data_loader.skip_first_batches [[autodoc]] data_loader.BatchSamplerShard [[autodoc]] data_loader.IterableDatasetShard [[autodoc]] data_loader.DataLoaderShard [[autodoc]] data_loader.DataLoaderDispatcher ## Optimizers [[autodoc]] optimizer.AcceleratedOptimizer ## Schedulers [[autodoc]] scheduler.AcceleratedScheduler
accelerate/docs/source/package_reference/torch_wrappers.md/0
{ "file_path": "accelerate/docs/source/package_reference/torch_wrappers.md", "repo_id": "accelerate", "token_count": 381 }
2
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Accelerated PyTorch Training on Mac With PyTorch v1.12 release, developers and researchers can take advantage of Apple silicon GPUs for significantly faster model training. This unlocks the ability to perform machine learning workflows like prototyping and fine-tuning locally, right on Mac. Apple's Metal Performance Shaders (MPS) as a backend for PyTorch enables this and can be used via the new `"mps"` device. This will map computational graphs and primitives on the MPS Graph framework and tuned kernels provided by MPS. For more information please refer official documents [Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/) and [MPS BACKEND](https://pytorch.org/docs/stable/notes/mps.html). ### Benefits of Training and Inference using Apple Silicon Chips 1. Enables users to train larger networks or batch sizes locally 2. Reduces data retrieval latency and provides the GPU with direct access to the full memory store due to unified memory architecture. Therefore, improving end-to-end performance. 3. Reduces costs associated with cloud-based development or the need for additional local GPUs. **Pre-requisites**: To install torch with mps support, please follow this nice medium article [GPU-Acceleration Comes to PyTorch on M1 Macs](https://medium.com/towards-data-science/gpu-acceleration-comes-to-pytorch-on-m1-macs-195c399efcc1). ## How it works out of the box It is enabled by default on MacOs machines with MPS enabled Apple Silicon GPUs. To disable it, pass `--cpu` flag to `accelerate launch` command or answer the corresponding question when answering the `accelerate config` questionnaire. You can directly run the following script to test it out on MPS enabled Apple Silicon machines: ```bash accelerate launch /examples/cv_example.py --data_dir images ``` ## A few caveats to be aware of 1. We strongly recommend to install PyTorch >= 1.13 (nightly version at the time of writing) on your MacOS machine. It has major fixes related to model correctness and performance improvements for transformer based models. Please refer to https://github.com/pytorch/pytorch/issues/82707 for more details. 2. Distributed setups `gloo` and `nccl` are not working with `mps` device. This means that currently only single GPU of `mps` device type can be used. Finally, please, remember that, 🤗 `Accelerate` only integrates MPS backend, therefore if you have any problems or questions with regards to MPS backend usage, please, file an issue with [PyTorch GitHub](https://github.com/pytorch/pytorch/issues).
accelerate/docs/source/usage_guides/mps.md/0
{ "file_path": "accelerate/docs/source/usage_guides/mps.md", "repo_id": "accelerate", "token_count": 861 }
3
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from contextlib import contextmanager from functools import wraps from typing import Dict, List, Optional, Union import torch import torch.nn as nn from .hooks import ( AlignDevicesHook, CpuOffload, UserCpuOffloadHook, add_hook_to_module, attach_align_device_hook, attach_align_device_hook_on_blocks, ) from .utils import ( OffloadedWeightsLoader, check_cuda_p2p_ib_support, check_device_map, extract_submodules_state_dict, find_tied_parameters, get_balanced_memory, infer_auto_device_map, is_mlu_available, is_npu_available, is_torch_version, is_xpu_available, load_checkpoint_in_model, offload_state_dict, parse_flag_from_env, retie_parameters, ) from .utils.other import recursive_getattr logger = logging.getLogger(__name__) @contextmanager def init_empty_weights(include_buffers: bool = None): """ A context manager under which models are initialized with all parameters on the meta device, therefore creating an empty model. Useful when just initializing the model would blow the available RAM. Args: include_buffers (`bool`, *optional*): Whether or not to also put all buffers on the meta device while initializing. Example: ```python import torch.nn as nn from accelerate import init_empty_weights # Initialize a model with 100 billions parameters in no time and without using any RAM. with init_empty_weights(): tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) ``` <Tip warning={true}> Any model created under this context manager has no weights. As such you can't do something like `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`]. Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not called. </Tip> """ if include_buffers is None: include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False) with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f: yield f @contextmanager def init_on_device(device: torch.device, include_buffers: bool = None): """ A context manager under which models are initialized with all parameters on the specified device. Args: device (`torch.device`): Device to initialize all parameters on. include_buffers (`bool`, *optional*): Whether or not to also put all buffers on the meta device while initializing. Example: ```python import torch.nn as nn from accelerate import init_on_device with init_on_device(device=torch.device("cuda")): tst = nn.Liner(100, 100) # on `cuda` device ``` """ if include_buffers is None: include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False) # TODO(shingjan): remove the torch version check once older versions are deprecated if is_torch_version(">=", "2.0") and include_buffers: with device: yield return old_register_parameter = nn.Module.register_parameter if include_buffers: old_register_buffer = nn.Module.register_buffer def register_empty_parameter(module, name, param): old_register_parameter(module, name, param) if param is not None: param_cls = type(module._parameters[name]) kwargs = module._parameters[name].__dict__ kwargs["requires_grad"] = param.requires_grad module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) def register_empty_buffer(module, name, buffer, persistent=True): old_register_buffer(module, name, buffer, persistent=persistent) if buffer is not None: module._buffers[name] = module._buffers[name].to(device) # Patch tensor creation if include_buffers: tensor_constructors_to_patch = { torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ["empty", "zeros", "ones", "full"] } else: tensor_constructors_to_patch = {} def patch_tensor_constructor(fn): def wrapper(*args, **kwargs): kwargs["device"] = device return fn(*args, **kwargs) return wrapper try: nn.Module.register_parameter = register_empty_parameter if include_buffers: nn.Module.register_buffer = register_empty_buffer for torch_function_name in tensor_constructors_to_patch.keys(): setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) yield finally: nn.Module.register_parameter = old_register_parameter if include_buffers: nn.Module.register_buffer = old_register_buffer for torch_function_name, old_torch_function in tensor_constructors_to_patch.items(): setattr(torch, torch_function_name, old_torch_function) def cpu_offload( model: nn.Module, execution_device: Optional[torch.device] = None, offload_buffers: bool = False, state_dict: Optional[Dict[str, torch.Tensor]] = None, preload_module_classes: Optional[List[str]] = None, ): """ Activates full CPU offload for a model. As a result, all parameters of the model will be offloaded and only one copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that state dict and put on the execution device passed as they are needed, then offloaded again. Args: model (`torch.nn.Module`): The model to offload. execution_device (`torch.device`, *optional*): The device on which the forward pass of the model will be executed (should be a GPU). Will default to the model first parameter device. offload_buffers (`bool`, *optional*, defaults to `False`): Whether or not to offload the buffers with the model parameters. state_dict (`Dict[str, torch.Tensor]`, *optional*): The state dict of the model that will be kept on CPU. preload_module_classes (`List[str]`, *optional*): A list of classes whose instances should load all their weights (even in the submodules) at the beginning of the forward. This should only be used for classes that have submodules which are registered but not called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. """ if execution_device is None: execution_device = next(iter(model.parameters())).device if state_dict is None: state_dict = {n: p.to("cpu") for n, p in model.state_dict().items()} add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True) attach_align_device_hook( model, execution_device=execution_device, offload=True, offload_buffers=offload_buffers, weights_map=state_dict, preload_module_classes=preload_module_classes, ) return model def cpu_offload_with_hook( model: torch.nn.Module, execution_device: Optional[Union[int, str, torch.device]] = None, prev_module_hook: Optional[UserCpuOffloadHook] = None, ): """ Offloads a model on the CPU and puts it back to an execution device when executed. The difference with [`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop. Args: model (`torch.nn.Module`): The model to offload. execution_device(`str`, `int` or `torch.device`, *optional*): The device on which the model should be executed. Will default to the MPS device if it's available, then GPU 0 if there is a GPU, and finally to the CPU. prev_module_hook (`UserCpuOffloadHook`, *optional*): The hook sent back by this function for a previous model in the pipeline you are running. If passed, its offload method will be called just before the forward of the model to which this hook is attached. Example: ```py model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device) model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1) model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2) hid_1 = model_1(input) for i in range(50): # model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop. hid_2 = model_2(hid_1) # model2 is offloaded to the CPU just before this forward. hid_3 = model_3(hid_3) # For model3, you need to manually call the hook offload method. hook_3.offload() ``` """ hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook) add_hook_to_module(model, hook, append=True) user_hook = UserCpuOffloadHook(model, hook) return model, user_hook def disk_offload( model: nn.Module, offload_dir: Union[str, os.PathLike], execution_device: Optional[torch.device] = None, offload_buffers: bool = False, preload_module_classes: Optional[List[str]] = None, ): """ Activates full disk offload for a model. As a result, all parameters of the model will be offloaded as memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and put on the execution device passed as they are needed, then offloaded again. Args: model (`torch.nn.Module`): The model to offload. offload_dir (`str` or `os.PathLike`): The folder in which to offload the model weights (or where the model weights are already offloaded). execution_device (`torch.device`, *optional*): The device on which the forward pass of the model will be executed (should be a GPU). Will default to the model's first parameter device. offload_buffers (`bool`, *optional*, defaults to `False`): Whether or not to offload the buffers with the model parameters. preload_module_classes (`List[str]`, *optional*): A list of classes whose instances should load all their weights (even in the submodules) at the beginning of the forward. This should only be used for classes that have submodules which are registered but not called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. """ if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")): offload_state_dict(offload_dir, model.state_dict()) if execution_device is None: execution_device = next(iter(model.parameters())).device weights_map = OffloadedWeightsLoader(save_folder=offload_dir) add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True) attach_align_device_hook( model, execution_device=execution_device, offload=True, offload_buffers=offload_buffers, weights_map=weights_map, preload_module_classes=preload_module_classes, ) return model def dispatch_model( model: nn.Module, device_map: Dict[str, Union[str, int, torch.device]], main_device: Optional[torch.device] = None, state_dict: Optional[Dict[str, torch.Tensor]] = None, offload_dir: Optional[Union[str, os.PathLike]] = None, offload_index: Optional[Dict[str, str]] = None, offload_buffers: bool = False, skip_keys: Optional[Union[str, List[str]]] = None, preload_module_classes: Optional[List[str]] = None, force_hooks: bool = False, ): """ Dispatches a model according to a given device map. Layers of the model might be spread across GPUs, offloaded on the CPU or even the disk. Args: model (`torch.nn.Module`): The model to dispatch. device_map (`Dict[str, Union[str, int, torch.device]]`): A dictionary mapping module names in the models `state_dict` to the device they should go to. Note that `"disk"` is accepted even if it's not a proper value for `torch.device`. main_device (`str`, `int` or `torch.device`, *optional*): The main execution device. Will default to the first device in the `device_map` different from `"cpu"` or `"disk"`. state_dict (`Dict[str, torch.Tensor]`, *optional*): The state dict of the part of the model that will be kept on CPU. offload_dir (`str` or `os.PathLike`): The folder in which to offload the model weights (or where the model weights are already offloaded). offload_index (`Dict`, *optional*): A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default to the index saved in `save_folder`. offload_buffers (`bool`, *optional*, defaults to `False`): Whether or not to offload the buffers with the model parameters. skip_keys (`str` or `List[str]`, *optional*): A list of keys to ignore when moving inputs or outputs between devices. preload_module_classes (`List[str]`, *optional*): A list of classes whose instances should load all their weights (even in the submodules) at the beginning of the forward. This should only be used for classes that have submodules which are registered but not called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. force_hooks (`bool`, *optional*, defaults to `False`): Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a single device. """ # Error early if the device map is incomplete. check_device_map(model, device_map) # for backward compatibility is_bnb_quantized = ( getattr(model, "is_quantized", False) or getattr(model, "is_loaded_in_8bit", False) ) and getattr(model, "quantization_method", "bitsandbytes") == "bitsandbytes" # We attach hooks if the device_map has at least 2 different devices or if # force_hooks is set to `True`. Otherwise, the model in already loaded # in the unique device and the user can decide where to dispatch the model. # If the model is quantized, we always force-dispatch the model if (len(set(device_map.values())) > 1) or is_bnb_quantized or force_hooks: if main_device is None: if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}: main_device = "cpu" else: main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0] if main_device != "cpu": cpu_modules = [name for name, device in device_map.items() if device == "cpu"] if state_dict is None and len(cpu_modules) > 0: state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules) disk_modules = [name for name, device in device_map.items() if device == "disk"] if offload_dir is None and offload_index is None and len(disk_modules) > 0: raise ValueError( "We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules " f"need to be offloaded: {', '.join(disk_modules)}." ) if ( len(disk_modules) > 0 and offload_index is None and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json"))) ): disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules) offload_state_dict(offload_dir, disk_state_dict) execution_device = { name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items() } execution_device[""] = main_device offloaded_devices = ["disk"] if main_device == "cpu" or main_device == "mps" else ["cpu", "disk"] offload = {name: device in offloaded_devices for name, device in device_map.items()} save_folder = offload_dir if len(disk_modules) > 0 else None if state_dict is not None or save_folder is not None or offload_index is not None: device = main_device if offload_index is not None else None weights_map = OffloadedWeightsLoader( state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device ) else: weights_map = None # When dispatching the model's parameters to the devices specified in device_map, we want to avoid allocating memory several times for the # tied parameters. The dictionary tied_params_map keeps track of the already allocated data for a given tied parameter (represented by its # original pointer) on each devices. tied_params = find_tied_parameters(model) tied_params_map = {} for group in tied_params: for param_name in group: # data_ptr() is enough here, as `find_tied_parameters` finds tied params simply by comparing `param1 is param2`, so we don't need # to care about views of tensors through storage_offset. data_ptr = recursive_getattr(model, param_name).data_ptr() tied_params_map[data_ptr] = {} # Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer, # as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer. attach_align_device_hook_on_blocks( model, execution_device=execution_device, offload=offload, offload_buffers=offload_buffers, weights_map=weights_map, skip_keys=skip_keys, preload_module_classes=preload_module_classes, tied_params_map=tied_params_map, ) # warn if there is any params on the meta device offloaded_devices_str = " and ".join( [device for device in set(device_map.values()) if device in ("cpu", "disk")] ) if len(offloaded_devices_str) > 0: logging.warning( f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}." ) # Attaching the hook may break tied weights, so we retie them retie_parameters(model, tied_params) # add warning to cuda and to method def add_warning(fn, model): @wraps(fn) def wrapper(*args, **kwargs): warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks." if str(fn.__name__) == "to": to_device = torch._C._nn._parse_to(*args, **kwargs)[0] if to_device is not None: logger.warning(warning_msg) else: logger.warning(warning_msg) for param in model.parameters(): if param.device == torch.device("meta"): raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.") return fn(*args, **kwargs) return wrapper model.to = add_warning(model.to, model) if is_npu_available(): model.npu = add_warning(model.npu, model) elif is_mlu_available(): model.mlu = add_warning(model.mlu, model) elif is_xpu_available(): model.xpu = add_warning(model.xpu, model) else: model.cuda = add_warning(model.cuda, model) # Check if we are using multi-gpus with RTX 4000 series use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1 if use_multi_gpu and not check_cuda_p2p_ib_support(): logger.warning( "We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. " "This can affect the multi-gpu inference when using accelerate device_map." "Please make sure to update your driver to the latest version which resolves this." ) else: device = list(device_map.values())[0] # `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)). if is_npu_available() and isinstance(device, int): device = f"npu:{device}" elif is_mlu_available() and isinstance(device, int): device = f"mlu:{device}" elif is_xpu_available() and isinstance(device, int): device = f"xpu:{device}" if device != "disk": model.to(device) else: raise ValueError( "You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead." ) # Convert OrderedDict back to dict for easier usage model.hf_device_map = dict(device_map) return model def load_checkpoint_and_dispatch( model: nn.Module, checkpoint: Union[str, os.PathLike], device_map: Optional[Union[str, Dict[str, Union[int, str, torch.device]]]] = None, max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None, no_split_module_classes: Optional[List[str]] = None, offload_folder: Optional[Union[str, os.PathLike]] = None, offload_buffers: bool = False, dtype: Optional[Union[str, torch.dtype]] = None, offload_state_dict: Optional[bool] = None, skip_keys: Optional[Union[str, List[str]]] = None, preload_module_classes: Optional[List[str]] = None, force_hooks: bool = False, ): """ Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are loaded and adds the various hooks that will make this model run properly (even if split across devices). Args: model (`torch.nn.Module`): The model in which we want to load a checkpoint. checkpoint (`str` or `os.PathLike`): The folder checkpoint to load. It can be: - a path to a file containing a whole model state dict - a path to a `.json` file containing the index to a sharded checkpoint - a path to a folder containing a unique `.index.json` file and the shards of a checkpoint. device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map). Defaults to None, which means [`dispatch_model`] will not be called. max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU and the available CPU RAM if unset. no_split_module_classes (`List[str]`, *optional*): A list of layer class names that should never be split across device (for instance any layer that has a residual connection). offload_folder (`str` or `os.PathLike`, *optional*): If the `device_map` contains any value `"disk"`, the folder where we will offload weights. offload_buffers (`bool`, *optional*, defaults to `False`): In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as well as the parameters. dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. offload_state_dict (`bool`, *optional*): If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if the weight of the CPU state dict + the biggest shard does not fit. Will default to `True` if the device map picked contains `"disk"` values. skip_keys (`str` or `List[str]`, *optional*): A list of keys to ignore when moving inputs or outputs between devices. preload_module_classes (`List[str]`, *optional*): A list of classes whose instances should load all their weights (even in the submodules) at the beginning of the forward. This should only be used for classes that have submodules which are registered but not called directly during the forward, for instance if a `dense` linear layer is registered, but at forward, `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly. force_hooks (`bool`, *optional*, defaults to `False`): Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a single device. Example: ```python >>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch >>> from huggingface_hub import hf_hub_download >>> from transformers import AutoConfig, AutoModelForCausalLM >>> # Download the Weights >>> checkpoint = "EleutherAI/gpt-j-6B" >>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin") >>> # Create a model and initialize it with empty weights >>> config = AutoConfig.from_pretrained(checkpoint) >>> with init_empty_weights(): ... model = AutoModelForCausalLM.from_config(config) >>> # Load the checkpoint and dispatch it to the right devices >>> model = load_checkpoint_and_dispatch( ... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"] ... ) ``` """ if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) if isinstance(device_map, str): if device_map != "sequential": max_memory = get_balanced_memory( model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype, low_zero=(device_map == "balanced_low_0"), ) device_map = infer_auto_device_map( model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype, offload_buffers=offload_buffers, ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): offload_state_dict = True load_checkpoint_in_model( model, checkpoint, device_map=device_map, offload_folder=offload_folder, dtype=dtype, offload_state_dict=offload_state_dict, offload_buffers=offload_buffers, ) if device_map is None: return model return dispatch_model( model, device_map=device_map, offload_dir=offload_folder, offload_buffers=offload_buffers, skip_keys=skip_keys, preload_module_classes=preload_module_classes, force_hooks=force_hooks, )
accelerate/src/accelerate/big_modeling.py/0
{ "file_path": "accelerate/src/accelerate/big_modeling.py", "repo_id": "accelerate", "token_count": 11237 }
4
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A utility for showing and hiding the terminal cursor on Windows and Linux, based on https://github.com/bchao1/bullet """ import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class CursorInfo(ctypes.Structure): # _fields is a specific attr expected by ctypes _fields_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def hide_cursor(): if os.name == "nt": ci = CursorInfo() handle = ctypes.windll.kernel32.GetStdHandle(-11) ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci)) ci.visible = False ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci)) elif os.name == "posix": sys.stdout.write("\033[?25l") sys.stdout.flush() def show_cursor(): if os.name == "nt": ci = CursorInfo() handle = ctypes.windll.kernel32.GetStdHandle(-11) ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci)) ci.visible = True ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci)) elif os.name == "posix": sys.stdout.write("\033[?25h") sys.stdout.flush() @contextmanager def hide(): "Context manager to hide the terminal cursor" try: hide_cursor() yield finally: show_cursor()
accelerate/src/accelerate/commands/menu/cursor.py/0
{ "file_path": "accelerate/src/accelerate/commands/menu/cursor.py", "repo_id": "accelerate", "token_count": 763 }
5
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class AcceleratedScheduler: """ A wrapper around a learning rate scheduler that will only step when the optimizer(s) have a training step. Useful to avoid making a scheduler step too fast when gradients went overflow and there was no training step (in mixed precision training) When performing gradient accumulation scheduler lengths should not be changed accordingly, Accelerate will always step the scheduler to account for it. Args: scheduler (`torch.optim.lr_scheduler._LRScheduler`): The scheduler to wrap. optimizers (one or a list of `torch.optim.Optimizer`): The optimizers used. step_with_optimizer (`bool`, *optional*, defaults to `True`): Whether or not the scheduler should be stepped at each optimizer step. split_batches (`bool`, *optional*, defaults to `False`): Whether or not the dataloaders split one batch across the different processes (so batch size is the same regardless of the number of processes) or create batches on each process (so batch size is the original batch size multiplied by the number of processes). """ def __init__(self, scheduler, optimizers, step_with_optimizer: bool = True, split_batches: bool = False): self.scheduler = scheduler self.optimizers = optimizers if isinstance(optimizers, (list, tuple)) else [optimizers] self.split_batches = split_batches self.step_with_optimizer = step_with_optimizer self.gradient_state = GradientState() def step(self, *args, **kwargs): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*args, **kwargs) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*args, **kwargs) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step num_processes = AcceleratorState().num_processes for _ in range(num_processes): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler, "total_steps"): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*args, **kwargs) else: self.scheduler.step(*args, **kwargs) # Passthroughs def get_last_lr(self): return self.scheduler.get_last_lr() def state_dict(self): return self.scheduler.state_dict() def load_state_dict(self, state_dict): self.scheduler.load_state_dict(state_dict) def get_lr(self): return self.scheduler.get_lr() def print_lr(self, *args, **kwargs): return self.scheduler.print_lr(*args, **kwargs)
accelerate/src/accelerate/scheduler.py/0
{ "file_path": "accelerate/src/accelerate/scheduler.py", "repo_id": "accelerate", "token_count": 1577 }
6
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import io import math import time from copy import deepcopy from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, Dataset from accelerate import Accelerator from accelerate.data_loader import SeedableRandomSampler, prepare_data_loader from accelerate.state import AcceleratorState from accelerate.test_utils import RegressionDataset, are_the_same_tensors from accelerate.utils import ( DataLoaderConfiguration, DistributedType, gather, is_bf16_available, is_datasets_available, is_ipex_available, is_mlu_available, is_npu_available, is_xpu_available, set_seed, synchronize_rng_states, ) # TODO: remove RegressionModel4XPU once ccl support empty buffer in broadcasting. if is_xpu_available(): from accelerate.test_utils import RegressionModel4XPU as RegressionModel else: from accelerate.test_utils import RegressionModel def generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler=False): "Creates a dataloader that can also use the `SeedableRandomSampler`" if use_seedable_sampler: # The SeedableRandomSampler is needed during distributed setups # for full reproducability across processes with the `DataLoader` sampler = SeedableRandomSampler( generator=generator, data_source=train_set, num_samples=len(train_set), ) return DataLoader(train_set, batch_size=batch_size, sampler=sampler) else: return DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) def print_main(state): print(f"Printing from the main process {state.process_index}") def print_local_main(state): print(f"Printing from the local main process {state.local_process_index}") def print_last(state): print(f"Printing from the last process {state.process_index}") def print_on(state, process_idx): print(f"Printing from process {process_idx}: {state.process_index}") def process_execution_check(): accelerator = Accelerator() num_processes = accelerator.num_processes # Test main_process_first context manager path = Path("check_main_process_first.txt") with accelerator.main_process_first(): if accelerator.is_main_process: time.sleep(0.1) # ensure main process takes longest with open(path, "a+") as f: f.write("Currently in the main process\n") else: with open(path, "a+") as f: f.write("Now on another process\n") accelerator.wait_for_everyone() if accelerator.is_main_process: with open(path) as f: text = "".join(f.readlines()) try: assert text.startswith("Currently in the main process\n"), "Main process was not first" if num_processes > 1: assert text.endswith("Now on another process\n"), "Main process was not first" assert ( text.count("Now on another process\n") == accelerator.num_processes - 1 ), f"Only wrote to file {text.count('Now on another process') + 1} times, not {accelerator.num_processes}" except AssertionError: path.unlink() raise if accelerator.is_main_process and path.exists(): path.unlink() accelerator.wait_for_everyone() # Test the decorators f = io.StringIO() with contextlib.redirect_stdout(f): accelerator.on_main_process(print_main)(accelerator.state) result = f.getvalue().rstrip() if accelerator.is_main_process: assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0" else: assert f.getvalue().rstrip() == "", f'{result} != ""' f.truncate(0) f.seek(0) with contextlib.redirect_stdout(f): accelerator.on_local_main_process(print_local_main)(accelerator.state) if accelerator.is_local_main_process: assert f.getvalue().rstrip() == "Printing from the local main process 0" else: assert f.getvalue().rstrip() == "" f.truncate(0) f.seek(0) with contextlib.redirect_stdout(f): accelerator.on_last_process(print_last)(accelerator.state) if accelerator.is_last_process: assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}" else: assert f.getvalue().rstrip() == "" f.truncate(0) f.seek(0) for process_idx in range(num_processes): with contextlib.redirect_stdout(f): accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx) if accelerator.process_index == process_idx: assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}" else: assert f.getvalue().rstrip() == "" f.truncate(0) f.seek(0) def init_state_check(): # Test we can instantiate this twice in a row. state = AcceleratorState() if state.local_process_index == 0: print("Testing, testing. 1, 2, 3.") print(state) def rng_sync_check(): state = AcceleratorState() synchronize_rng_states(["torch"]) assert are_the_same_tensors(torch.get_rng_state()), "RNG states improperly synchronized on CPU." if state.distributed_type == DistributedType.MULTI_GPU: synchronize_rng_states(["cuda"]) assert are_the_same_tensors(torch.cuda.get_rng_state()), "RNG states improperly synchronized on GPU." elif state.distributed_type == DistributedType.MULTI_XPU: synchronize_rng_states(["xpu"]) assert are_the_same_tensors(torch.xpu.get_rng_state()), "RNG states improperly synchronized on XPU." generator = torch.Generator() synchronize_rng_states(["generator"], generator=generator) assert are_the_same_tensors(generator.get_state()), "RNG states improperly synchronized in generator." if state.local_process_index == 0: print("All rng are properly synched.") def dl_preparation_check(): state = AcceleratorState() length = 32 * state.num_processes dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) print(state.process_index, result, type(dl)) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." if state.process_index == 0: print("Non-shuffled dataloader passing.") dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." if state.local_process_index == 0: print("Shuffled dataloader passing.") def central_dl_preparation_check(): state = AcceleratorState() length = 32 * state.num_processes dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." dl = DataLoader(range(length), batch_size=8) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, dispatch_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result) assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." if state.process_index == 0: print("Non-shuffled central dataloader passing.") dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." dl = DataLoader(range(length), batch_size=8, shuffle=True) dl = prepare_data_loader( dl, state.device, state.num_processes, state.process_index, put_on_device=True, split_batches=True, dispatch_batches=True, ) result = [] for batch in dl: result.append(gather(batch)) result = torch.cat(result).tolist() result.sort() assert result == list(range(length)), "Wrong shuffled dataloader result." if state.local_process_index == 0: print("Shuffled central dataloader passing.") def custom_sampler_check(): state = AcceleratorState() class CustomDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index] class CustomBatchSampler: def __init__(self, dataset_length: int, batch_size: int, shuffle: bool = True): self.batch_size = batch_size self.data_index = np.arange(dataset_length) self.shuffle = shuffle def __iter__(self): num_batches = len(self) if self.shuffle: index = np.random.permutation(self.data_index) else: index = self.data_index output = np.array_split(index, num_batches) yield from output def __len__(self): return math.ceil(len(self.data_index) / self.batch_size) dataset = CustomDataset(range(32 * state.num_processes)) sampler = CustomBatchSampler(len(dataset), batch_size=8) dl = DataLoader(dataset, batch_sampler=sampler) dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index) # We need just ensure that `dl.batch_sampler` (or `dl.batch_sampler.batch_sampler` is indeed the old batch sampler if hasattr(dl.batch_sampler, "batch_sampler"): assert isinstance( dl.batch_sampler.batch_sampler, CustomBatchSampler ), "Custom sampler was changed after calling `prepare_data_loader`" else: assert isinstance( dl.batch_sampler, CustomBatchSampler ), "Custom sampler was changed after calling `prepare_data_loader`" def check_seedable_sampler(): # Set seed set_seed(42) train_set = RegressionDataset(length=10, seed=42) train_dl = DataLoader(train_set, batch_size=2, shuffle=True) config = DataLoaderConfiguration(use_seedable_sampler=True) accelerator = Accelerator(dataloader_config=config) train_dl = accelerator.prepare(train_dl) original_items = [] for _ in range(3): for batch in train_dl: original_items.append(batch["x"]) original_items = torch.cat(original_items) # Set seed again and the epoch set_seed(42) train_dl.set_epoch(0) new_items = [] for _ in range(3): for batch in train_dl: new_items.append(batch["x"]) new_items = torch.cat(new_items) assert torch.allclose(original_items, new_items), "Did not obtain the same items with the same seed and epoch." def check_seedable_sampler_in_batch_sampler_shard(): set_seed(42) config = DataLoaderConfiguration(use_seedable_sampler=True) accelerator = Accelerator(dataloader_config=config) assert accelerator.num_processes > 1, "This test requires more than one process." dataloader = DataLoader(list(range(10)), batch_size=1, shuffle=True) prepared_data_loader = prepare_data_loader( dataloader=dataloader, use_seedable_sampler=True, ) target_sampler = prepared_data_loader.batch_sampler.batch_sampler.sampler assert isinstance( target_sampler, SeedableRandomSampler ), "Sampler in BatchSamplerShard is not SeedableRandomSampler." def mock_training(length, batch_size, generator, use_seedable_sampler=False): set_seed(42) generator.manual_seed(42) train_set = RegressionDataset(length=length, seed=42) train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) for epoch in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) loss.backward() optimizer.step() return train_set, model def training_check(use_seedable_sampler=False): state = AcceleratorState() generator = torch.Generator() batch_size = 8 length = batch_size * 4 * state.num_processes train_set, old_model = mock_training(length, batch_size * state.num_processes, generator, use_seedable_sampler) assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes." assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes." accelerator = Accelerator() train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.") dataloader_config = DataLoaderConfiguration(split_batches=True, use_seedable_sampler=use_seedable_sampler) accelerator = Accelerator(dataloader_config=dataloader_config) train_dl = generate_baseline_dataloader( train_set, generator, batch_size * state.num_processes, use_seedable_sampler ) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." accelerator.print("Training yielded the same results on one CPU or distributes setup with batch split.") if torch.cuda.is_available() or is_npu_available() or is_mlu_available(): # Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16 print("FP16 training check.") AcceleratorState._reset_state() dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) accelerator = Accelerator(mixed_precision="fp16", dataloader_config=dataloader_config) train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." if torch.cuda.is_available(): # Mostly a test that model.forward will have autocast when running unwrap_model(model, keep_fp32_wrapper=True) print("Keep fp32 wrapper check.") AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="fp16") model = torch.nn.Linear(2, 4) model = accelerator.prepare(model) model_with_fp32_wrapper = accelerator.unwrap_model(model, keep_fp32_wrapper=True) # Run forward with fp16 as input. # When the model is with mixed precision wrapper, no error will be raised. input_tensor = torch.Tensor([1, 2]).to(dtype=torch.float16, device=accelerator.device) output = model_with_fp32_wrapper(input_tensor) # BF16 support is only for CPU + TPU, and some GPU if is_bf16_available(): # Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16 print("BF16 training check.") AcceleratorState._reset_state() dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) accelerator = Accelerator(mixed_precision="bf16", dataloader_config=dataloader_config) train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." # IPEX support is only for CPU if is_ipex_available(): print("ipex BF16 training check.") AcceleratorState._reset_state() dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) accelerator = Accelerator(mixed_precision="bf16", cpu=True, dataloader_config=dataloader_config) train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." # XPU support is only for XPU if is_xpu_available(): print("xpu BF16 training check.") AcceleratorState._reset_state() dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) accelerator = Accelerator(mixed_precision="bf16", cpu=False, dataloader_config=dataloader_config) train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) set_seed(42) generator.manual_seed(42) for _ in range(3): for batch in train_dl: model.zero_grad() output = model(batch["x"]) loss = torch.nn.functional.mse_loss(output, batch["y"]) accelerator.backward(loss) optimizer.step() model = accelerator.unwrap_model(model).cpu() assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on XPU or distributed training." assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on XPU or distributed training." def test_split_between_processes_dataset(datasets_Dataset): state = AcceleratorState() data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes)]) with state.split_between_processes(data, apply_padding=False) as results: assert ( len(results) == 2 ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes - 1)]) with state.split_between_processes(data, apply_padding=False) as results: if state.is_last_process: assert ( len(results) == 1 ), f"Last process did not receive a single item. Process index: {state.process_index}; Length: {len(results)}" else: assert ( len(results) == 2 ), f"One of the intermediate processes did not receive two items. Process index: {state.process_index}; Length: {len(results)}" data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes - 1)]) with state.split_between_processes(data, apply_padding=True) as results: if state.num_processes == 1: assert ( len(results) == 1 ), f"Single process did not receive a single item. Process index: {state.process_index}; Length: {len(results)}" else: assert ( len(results) == 2 ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" state.wait_for_everyone() def test_split_between_processes_list(): state = AcceleratorState() data = list(range(0, 2 * state.num_processes)) with state.split_between_processes(data) as results: assert ( len(results) == 2 ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" data = list(range(0, (3 * state.num_processes) - 1)) with state.split_between_processes(data, apply_padding=True) as results: if state.is_last_process: # Test that the last process gets the extra item(s) num_samples_per_device = math.ceil(len(data) / state.num_processes) assert ( len(results) == num_samples_per_device ), f"Last process did not get the extra item(s). Process index: {state.process_index}; Length: {len(results)}" state.wait_for_everyone() def test_split_between_processes_nested_dict(): state = AcceleratorState() a = [1, 2, 3, 4, 5, 6, 7, 8] b = ["a", "b", "c", "d", "e", "f", "g", "h"] c = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]) if state.num_processes in (1, 2, 4): data = {"a": a, "b": b, "c": c} data_copy = deepcopy(data) with state.split_between_processes(data) as results: if state.process_index == 0: assert results["a"] == data_copy["a"][: 8 // state.num_processes] elif state.num_processes == 2: assert results["a"] == data_copy["a"][4:] elif state.process_index == 3: # We return a list each time assert results["a"] == data_copy["a"][-2:], f'Expected: {data_copy["a"][-2]}, Actual: {results["a"]}' if state.process_index == 0: assert results["b"] == data_copy["b"][: 8 // state.num_processes] elif state.num_processes == 2: assert results["b"] == data_copy["b"][4:] elif state.process_index == 3: assert results["b"] == data_copy["b"][-2:] if state.process_index == 0: assert torch.allclose( results["c"], data_copy["c"][: 8 // state.num_processes] ), f"Did not obtain expected values on process 0, expected `{data['c'][:8 // state.num_processes]}`, received: {results['c']}" elif state.num_processes == 2: assert torch.allclose( results["c"], data_copy["c"][4:] ), f"Did not obtain expected values on process 2, expected `{data['c'][4:]}`, received: {results['c']}" elif state.process_index == 3: assert torch.allclose( results["c"], data_copy["c"][-2:] ), f"Did not obtain expected values on process 4, expected `{data['c'][-2:]}`, received: {results['c']}" state.wait_for_everyone() def test_split_between_processes_tensor(): state = AcceleratorState() if state.num_processes > 1: data = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]).to(state.device) with state.split_between_processes(data) as results: if state.process_index == 0: assert torch.allclose(results, torch.tensor([0, 1, 2, 3]).to(state.device)) else: assert torch.allclose(results, torch.tensor([4, 5, 6, 7]).to(state.device)) state.wait_for_everyone() def test_trigger(): accelerator = Accelerator() # should start with being false assert accelerator.check_trigger() is False # set a breakpoint on the main process if accelerator.is_main_process: accelerator.set_trigger() # check it's been activated across all processes # calls `all_reduce` and triggers a sync assert accelerator.check_trigger() is True # check it's been reset after the sync assert accelerator.check_trigger() is False def test_reinstantiated_state(): import pytest AcceleratorState._reset_state() simple_model = torch.nn.Linear(1, 1) # First define an accelerator accelerator = Accelerator() # Then call `reset_state`, breaking the state existing in the accelerator AcceleratorState._reset_state() # Now try and prepare a simple model, should raise the custom error early with pytest.raises(AttributeError) as cm: accelerator.prepare(simple_model) assert "`AcceleratorState` object has no attribute" in str(cm.value.args[0]) assert "This happens if `AcceleratorState._reset_state()`" in str(cm.value.args[0]) def main(): accelerator = Accelerator() state = accelerator.state if state.local_process_index == 0: print("**Initialization**") init_state_check() state.wait_for_everyone() if state.distributed_type == DistributedType.MULTI_GPU: num_processes_per_node = torch.cuda.device_count() else: num_processes_per_node = state.num_processes # We only run this test on non-multinode if num_processes_per_node == state.num_processes: if state.process_index == 0: print("\n**Test process execution**") process_execution_check() if state.process_index == 0: print("\n**Test split between processes as a list**") test_split_between_processes_list() if state.process_index == 0: print("\n**Test split between processes as a dict**") test_split_between_processes_nested_dict() if state.process_index == 0: print("\n**Test split between processes as a tensor**") test_split_between_processes_tensor() if state.process_index == 0: print("\n**Test split between processes as a datasets.Dataset**") if is_datasets_available(): from datasets import Dataset as datasets_Dataset test_split_between_processes_dataset(datasets_Dataset) else: print("Skipped because Hugging Face datasets is not available") if state.local_process_index == 0: print("\n**Test random number generator synchronization**") rng_sync_check() if state.local_process_index == 0: print("\n**DataLoader integration test**") dl_preparation_check() if state.distributed_type != DistributedType.XLA: central_dl_preparation_check() custom_sampler_check() check_seedable_sampler() if state.num_processes > 1: check_seedable_sampler_in_batch_sampler_shard() # Trainings are not exactly the same in DeepSpeed and CPU mode if state.distributed_type == DistributedType.DEEPSPEED: return if state.local_process_index == 0: print("\n**Training integration test**") training_check(use_seedable_sampler=False) training_check(use_seedable_sampler=True) if state.local_process_index == 0: print("\n**Breakpoint trigger test**") test_trigger() if state.local_process_index == 0: print("\n**Test reinstantiated state**") test_reinstantiated_state() if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_script.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_script.py", "repo_id": "accelerate", "token_count": 12971 }
7
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import gc import importlib import inspect import json import logging import os import re import shutil import tempfile import warnings from collections import OrderedDict, defaultdict from typing import Dict, List, Optional, Tuple, Union import packaging import torch import torch.nn as nn from ..state import AcceleratorState from .constants import SAFE_WEIGHTS_NAME, WEIGHTS_NAME from .dataclasses import AutocastKwargs, CustomDtype, DistributedType from .imports import ( is_mlu_available, is_mps_available, is_npu_available, is_peft_available, is_torch_xla_available, is_xpu_available, ) from .offload import load_offloaded_weight, offload_weight, save_offload_index from .tqdm import is_tqdm_available, tqdm from .versions import compare_versions if is_npu_available(check_device=False): import torch_npu # noqa: F401 if is_mlu_available(check_device=False): import torch_mlu # noqa: F401 from safetensors import safe_open from safetensors.torch import load_file as safe_load_file WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json" logger = logging.getLogger(__name__) def is_peft_model(model): from .other import extract_model_from_parallel if is_peft_available(): from peft import PeftModel return is_peft_available() and isinstance(extract_model_from_parallel(model), PeftModel) def check_device_same(first_device, second_device): """ Utility method to check if two `torch` devices are similar. When dealing with CUDA devices, torch throws `False` for `torch.device("cuda") == torch.device("cuda:0")` whereas they should be the same Args: first_device (`torch.device`): First device to check second_device (`torch.device`): Second device to check """ if first_device.type != second_device.type: return False if first_device.type == "cuda" and first_device.index is None: # In case the first_device is a cuda device and have # the index attribute set to `None`, default it to `0` first_device = torch.device("cuda", index=0) if second_device.type == "cuda" and second_device.index is None: # In case the second_device is a cuda device and have # the index attribute set to `None`, default it to `0` second_device = torch.device("cuda", index=0) return first_device == second_device def convert_file_size_to_int(size: Union[int, str]): """ Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). Args: size (`int` or `str`): The size to convert. Will be directly returned if an `int`. Example: ```py >>> convert_file_size_to_int("1MiB") 1048576 ``` """ mem_size = -1 err_msg = ( f"`size` {size} is not in a valid format. Use an integer for bytes, or a string with an unit (like '5.0GB')." ) try: if isinstance(size, int): mem_size = size elif size.upper().endswith("GIB"): mem_size = int(float(size[:-3]) * (2**30)) elif size.upper().endswith("MIB"): mem_size = int(float(size[:-3]) * (2**20)) elif size.upper().endswith("KIB"): mem_size = int(float(size[:-3]) * (2**10)) elif size.upper().endswith("GB"): int_size = int(float(size[:-2]) * (10**9)) mem_size = int_size // 8 if size.endswith("b") else int_size elif size.upper().endswith("MB"): int_size = int(float(size[:-2]) * (10**6)) mem_size = int_size // 8 if size.endswith("b") else int_size elif size.upper().endswith("KB"): int_size = int(float(size[:-2]) * (10**3)) mem_size = int_size // 8 if size.endswith("b") else int_size except ValueError: raise ValueError(err_msg) if mem_size < 0: raise ValueError(err_msg) return mem_size def dtype_byte_size(dtype: torch.dtype): """ Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: ```py >>> dtype_byte_size(torch.float32) 4 ``` """ if dtype == torch.bool: return 1 / 8 elif dtype == CustomDtype.INT2: return 1 / 4 elif dtype == CustomDtype.INT4: return 1 / 2 elif dtype == CustomDtype.FP8: return 1 bit_search = re.search(r"[^\d](\d+)$", str(dtype)) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]: """ Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with non-overlapping lifetimes may have the same id. """ _SIZE = { torch.int64: 8, torch.float32: 4, torch.int32: 4, torch.bfloat16: 2, torch.float16: 2, torch.int16: 2, torch.uint8: 1, torch.int8: 1, torch.bool: 1, torch.float64: 8, } try: storage_ptr = tensor.untyped_storage().data_ptr() storage_size = tensor.untyped_storage().nbytes() except Exception: # Fallback for torch==1.10 try: storage_ptr = tensor.storage().data_ptr() storage_size = tensor.storage().size() * _SIZE[tensor.dtype] except NotImplementedError: # Fallback for meta storage storage_ptr = 0 # On torch >=2.0 this is the tensor size storage_size = tensor.nelement() * _SIZE[tensor.dtype] return tensor.device, storage_ptr, storage_size def shard_checkpoint( state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME ): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. <Tip warning={true}> If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will have a size greater than `max_shard_size`. </Tip> Args: state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`): The name of the model save file. """ max_shard_size = convert_file_size_to_int(max_shard_size) sharded_state_dicts = [{}] last_block_size = 0 total_size = 0 storage_id_to_block = {} for key, weight in state_dict.items(): # when bnb serialization is used the weights in the state dict can be strings # check: https://github.com/huggingface/transformers/pull/24416 for more details if isinstance(weight, str): continue else: storage_id = id_tensor_storage(weight) # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block` if storage_id in storage_id_to_block: block_id = storage_id_to_block[storage_id] sharded_state_dicts[block_id][key] = weight continue weight_size = weight.numel() * dtype_byte_size(weight.dtype) # If this weight is going to tip up over the maximal size, we split. if last_block_size + weight_size > max_shard_size: sharded_state_dicts.append({}) last_block_size = 0 sharded_state_dicts[-1][key] = weight last_block_size += weight_size total_size += weight_size storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1 # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = weights_name.replace(".bin", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.bin") shard_file = shard_file.replace( ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors" ) shards[shard_file] = shard for key in shard.keys(): weight_map[key] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index def set_module_tensor_to_device( module: nn.Module, tensor_name: str, device: Union[int, str, torch.device], value: Optional[torch.Tensor] = None, dtype: Optional[Union[str, torch.dtype]] = None, fp16_statistics: Optional[torch.HalfTensor] = None, tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None, ): """ A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing `param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function). Args: module (`torch.nn.Module`): The module in which the tensor we want to move lives. tensor_name (`str`): The full name of the parameter/buffer. device (`int`, `str` or `torch.device`): The device on which to set the tensor. value (`torch.Tensor`, *optional*): The value of the tensor (useful when going from the meta device to any other device). dtype (`torch.dtype`, *optional*): If passed along the value of the parameter will be cast to this `dtype`. Otherwise, `value` will be cast to the dtype of the existing parameter in the model. fp16_statistics (`torch.HalfTensor`, *optional*): The list of fp16 statistics to set on the module, used for 8 bit model serialization. tied_params_map (Dict[int, Dict[torch.device, torch.Tensor]], *optional*, defaults to `None`): A map of current data pointers to dictionaries of devices to already dispatched tied weights. For a given execution device, this parameter is useful to reuse the first available pointer of a shared weight on the device for all others, instead of duplicating memory. """ # Recurse if needed if "." in tensor_name: splits = tensor_name.split(".") for split in splits[:-1]: new_module = getattr(module, split) if new_module is None: raise ValueError(f"{module} has no attribute {split}.") module = new_module tensor_name = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") is_buffer = tensor_name in module._buffers old_value = getattr(module, tensor_name) # Treat the case where old_value (or a custom `value`, typically offloaded to RAM/disk) belongs to a tied group, and one of the weight # in the tied group has already been dispatched to the device, by avoiding reallocating memory on the device and just copying the pointer. if ( value is not None and tied_params_map is not None and value.data_ptr() in tied_params_map and device in tied_params_map[value.data_ptr()] ): module._parameters[tensor_name] = tied_params_map[value.data_ptr()][device] return elif ( tied_params_map is not None and old_value.data_ptr() in tied_params_map and device in tied_params_map[old_value.data_ptr()] ): module._parameters[tensor_name] = tied_params_map[old_value.data_ptr()][device] return if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.") if value is not None: if old_value.shape != value.shape: raise ValueError( f'Trying to set a tensor of shape {value.shape} in "{tensor_name}" (which has shape {old_value.shape}), this look incorrect.' ) if dtype is None: # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model value = value.to(old_value.dtype) elif not str(value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): value = value.to(dtype) param = module._parameters[tensor_name] if tensor_name in module._parameters else None param_cls = type(param) device_quantization = None with torch.no_grad(): # leave it on cpu first before moving them to cuda # # fix the case where the device is meta, we don't want to put it on cpu because there is no data =0 if ( param is not None and param.device.type != "cuda" and torch.device(device).type == "cuda" and param_cls.__name__ in ["Int8Params", "FP4Params", "Params4bit"] ): device_quantization = device device = "cpu" # `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)). if is_npu_available() and isinstance(device, int): device = f"npu:{device}" elif is_mlu_available() and isinstance(device, int): device = f"mlu:{device}" if is_xpu_available() and isinstance(device, int): device = f"xpu:{device}" if value is None: new_value = old_value.to(device) if dtype is not None and device in ["meta", torch.device("meta")]: if not str(old_value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): new_value = new_value.to(dtype) if not is_buffer: module._parameters[tensor_name] = param_cls(new_value, requires_grad=old_value.requires_grad) elif isinstance(value, torch.Tensor): new_value = value.to(device) else: new_value = torch.tensor(value, device=device) if device_quantization is not None: device = device_quantization if is_buffer: module._buffers[tensor_name] = new_value elif value is not None or not check_device_same(torch.device(device), module._parameters[tensor_name].device): param_cls = type(module._parameters[tensor_name]) kwargs = module._parameters[tensor_name].__dict__ if param_cls.__name__ in ["Int8Params", "FP4Params"]: if param_cls.__name__ == "Int8Params" and new_value.dtype == torch.float32: # downcast to fp16 if any - needed for 8bit serialization new_value = new_value.to(torch.float16) # quantize module that are going to stay on the cpu so that we offload quantized weights if device == "cpu" and param_cls.__name__ == "Int8Params": new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(0).to("cpu") new_value.CB = new_value.CB.to("cpu") new_value.SCB = new_value.SCB.to("cpu") else: new_value = param_cls(new_value, requires_grad=old_value.requires_grad, **kwargs).to(device) elif param_cls.__name__ in ["QTensor", "QBitsTensor"]: new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad).to(device) else: new_value = param_cls(new_value, requires_grad=old_value.requires_grad).to(device) module._parameters[tensor_name] = new_value if fp16_statistics is not None: module._parameters[tensor_name].SCB = fp16_statistics.to(device) del fp16_statistics # as we put the weight to meta, it doesn't have SCB attr anymore. make sure that it is not a meta weight if ( module.__class__.__name__ == "Linear8bitLt" and getattr(module.weight, "SCB", None) is None and str(module.weight.device) != "meta" ): # quantize only if necessary device_index = torch.device(device).index if torch.device(device).type == "cuda" else None if not getattr(module.weight, "SCB", None) and device_index is not None: if module.bias is not None and module.bias.device.type != "meta": # if a bias exists, we need to wait until the bias is set on the correct device module = module.cuda(device_index) elif module.bias is None: # if no bias exists, we can quantize right away module = module.cuda(device_index) elif module.__class__.__name__ == "Linear4bit" and getattr(module.weight, "quant_state", None) is None: # quantize only if necessary device_index = torch.device(device).index if torch.device(device).type == "cuda" else None if not getattr(module.weight, "quant_state", None) and device_index is not None: module.weight = module.weight.cuda(device_index) # clean pre and post foward hook if is_npu_available(): torch.npu.empty_cache() elif is_mlu_available(): torch.mlu.empty_cache() elif is_xpu_available(): torch.xpu.empty_cache() else: torch.cuda.empty_cache() # When handling tied weights, we update tied_params_map to keep track of the tied weights that have already been allocated on the device in # order to avoid duplicating memory, see above. if ( tied_params_map is not None and old_value.data_ptr() in tied_params_map and device not in tied_params_map[old_value.data_ptr()] ): tied_params_map[old_value.data_ptr()][device] = new_value elif ( value is not None and tied_params_map is not None and value.data_ptr() in tied_params_map and device not in tied_params_map[value.data_ptr()] ): tied_params_map[value.data_ptr()][device] = new_value def named_module_tensors( module: nn.Module, include_buffers: bool = True, recurse: bool = False, remove_non_persistent: bool = False ): """ A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True` it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`. Args: module (`torch.nn.Module`): The module we want the tensors on. include_buffer (`bool`, *optional*, defaults to `True`): Whether or not to include the buffers in the result. recurse (`bool`, *optional`, defaults to `False`): Whether or not to go look in every submodule or just return the direct parameters and buffers. remove_non_persistent (`bool`, *optional*, defaults to `False`): Whether or not to remove the non persistent buffer from the buffers. Useful only when include_buffers = True """ yield from module.named_parameters(recurse=recurse) if include_buffers: non_persistent_buffers = set() if remove_non_persistent: non_persistent_buffers = get_non_persistent_buffers(module, recurse=recurse) for named_buffer in module.named_buffers(recurse=recurse): name, _ = named_buffer if name not in non_persistent_buffers: yield named_buffer def get_non_persistent_buffers(module: nn.Module, recurse: bool = False): """ Gather all non persistent buffers of a given modules into a set Args: module (`nn.Module`): The module we want the non persistent buffers on. recurse (`bool`, *optional*, defaults to `False`): Whether or not to go look in every submodule or just return the direct non persistent buffers. """ non_persistent_buffers_set = module._non_persistent_buffers_set if recurse: for _, m in module.named_modules(): non_persistent_buffers_set |= m._non_persistent_buffers_set return non_persistent_buffers_set class FindTiedParametersResult(list): """ This is a subclass of a list to handle backward compatibility for Transformers. Do not rely on the fact this is not a list or on the `values` method as in the future this will be removed. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def values(self): # TODO: at the next Transformers release (4.28.0) issue a deprecation warning here. return sum([x[1:] for x in self], []) def check_tied_parameters_in_config(model: nn.Module): """ Check if there is any indication in the given model that some weights should be tied. Args: model (`torch.nn.Module`): The model to inspect Returns: bool: True if the model needs to have tied weights """ # based on model.tie_weights() method has_tied_word_embedding = False has_tied_encoder_decoder = False has_tied_module = False if "PreTrainedModel" in [c.__name__ for c in inspect.getmro(model.__class__)]: has_tied_word_embedding = ( hasattr(model, "config") and getattr(model.config, "tie_word_embeddings", False) and model.get_output_embeddings() ) has_tied_encoder_decoder = ( hasattr(model, "config") and getattr(model.config, "is_encoder_decoder", False) and getattr(model.config, "tie_encoder_decoder", False) ) has_tied_module = any(hasattr(module, "_tie_weights") for module in model.modules()) return any([has_tied_word_embedding, has_tied_encoder_decoder, has_tied_module]) def _get_param_device(param, device_map): if param in device_map: return device_map[param] parent_param = ".".join(param.split(".")[:-1]) if parent_param == param: raise ValueError(f"The `device_map` does not contain the module {param}.") else: return _get_param_device(parent_param, device_map) def check_tied_parameters_on_same_device(tied_params, device_map): """ Check if tied parameters are on the same device Args: tied_params (`List[List[str]]`): A list of lists of parameter names being all tied together. device_map (`Dict[str, Union[int, str, torch.device]]`): A map that specifies where each submodule should go. """ for tie_param in tied_params: tie_param_devices = {} for param in tie_param: tie_param_devices[param] = _get_param_device(param, device_map) if len(set(tie_param_devices.values())) > 1: logger.warn( f"Tied parameters are on different devices: {tie_param_devices}. " "Please modify your custom device map or set `device_map='auto'`. " ) def find_tied_parameters(model: nn.Module, **kwargs): """ Find the tied parameters in a given model. <Tip warning={true}> The signature accepts keyword arguments, but they are for the recursive part of this function and you should ignore them. </Tip> Args: model (`torch.nn.Module`): The model to inspect. Returns: List[List[str]]: A list of lists of parameter names being all tied together. Example: ```py >>> from collections import OrderedDict >>> import torch.nn as nn >>> model = nn.Sequential(OrderedDict([("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(4, 4))])) >>> model.linear2.weight = model.linear1.weight >>> find_tied_parameters(model) [['linear1.weight', 'linear2.weight']] ``` """ # Initialize result and named_parameters before recursing. named_parameters = kwargs.get("named_parameters", None) prefix = kwargs.get("prefix", "") result = kwargs.get("result", {}) if named_parameters is None: named_parameters = {n: p for n, p in model.named_parameters()} else: # A tied parameter will not be in the full `named_parameters` seen above but will be in the `named_parameters` # of the submodule it belongs to. So while recursing we track the names that are not in the initial # `named_parameters`. for name, parameter in model.named_parameters(): full_name = name if prefix == "" else f"{prefix}.{name}" if full_name not in named_parameters: # When we find one, it has to be one of the existing parameters. for new_name, new_param in named_parameters.items(): if new_param is parameter: if new_name not in result: result[new_name] = [] result[new_name].append(full_name) # Once we have treated direct parameters, we move to the child modules. for name, child in model.named_children(): child_name = name if prefix == "" else f"{prefix}.{name}" find_tied_parameters(child, named_parameters=named_parameters, prefix=child_name, result=result) return FindTiedParametersResult([sorted([weight] + list(set(tied))) for weight, tied in result.items()]) def retie_parameters(model, tied_params): """ Reties tied parameters in a given model if the link was broken (for instance when adding hooks). Args: model (`torch.nn.Module`): The model in which to retie parameters. tied_params (`List[List[str]]`): A mapping parameter name to tied parameter name as obtained by `find_tied_parameters`. """ for tied_group in tied_params: param_to_tie = None # two loops : the first one to set param_to_tie , the second one to change the values of tied_group for param_name in tied_group: module = model splits = param_name.split(".") for split in splits[:-1]: module = getattr(module, split) param = getattr(module, splits[-1]) if param_to_tie is None and param.device != torch.device("meta"): param_to_tie = param break if param_to_tie is not None: for param_name in tied_group: module = model splits = param_name.split(".") for split in splits[:-1]: module = getattr(module, split) setattr(module, splits[-1], param_to_tie) def _get_proper_dtype(dtype: Union[str, torch.device]) -> torch.dtype: """ Just does torch.dtype(dtype) if necessary. """ if isinstance(dtype, str): # We accept "torch.float16" or just "float16" dtype = dtype.replace("torch.", "") dtype = getattr(torch, dtype) return dtype def compute_module_sizes( model: nn.Module, dtype: Optional[Union[str, torch.device]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None, buffers_only: bool = False, ): """ Compute the size of each submodule of a given model. """ if dtype is not None: dtype = _get_proper_dtype(dtype) dtype_size = dtype_byte_size(dtype) if special_dtypes is not None: special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()} special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()} module_sizes = defaultdict(int) module_list = [] if not buffers_only: module_list = named_module_tensors(model, recurse=True) else: module_list = model.named_buffers(recurse=True) for name, tensor in module_list: if special_dtypes is not None and name in special_dtypes: size = tensor.numel() * special_dtypes_size[name] elif dtype is None: size = tensor.numel() * dtype_byte_size(tensor.dtype) elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): # According to the code in set_module_tensor_to_device, these types won't be converted # so use their original size here size = tensor.numel() * dtype_byte_size(tensor.dtype) else: size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype)) name_parts = name.split(".") for idx in range(len(name_parts) + 1): module_sizes[".".join(name_parts[:idx])] += size return module_sizes def compute_module_total_buffer_size( model: nn.Module, dtype: Optional[Union[str, torch.device]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None, ): """ Compute the total size of buffers in each submodule of a given model. """ module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes, buffers_only=True) return module_sizes.get("", 0) def get_max_layer_size( modules: List[Tuple[str, torch.nn.Module]], module_sizes: Dict[str, int], no_split_module_classes: List[str] ): """ Utility function that will scan a list of named modules and return the maximum size used by one full layer. The definition of a layer being: - a module with no direct children (just parameters and buffers) - a module whose class name is in the list `no_split_module_classes` Args: modules (`List[Tuple[str, torch.nn.Module]]`): The list of named modules where we want to determine the maximum layer size. module_sizes (`Dict[str, int]`): A dictionary mapping each layer name to its size (as generated by `compute_module_sizes`). no_split_module_classes (`List[str]`): A list of class names for layers we don't want to be split. Returns: `Tuple[int, List[str]]`: The maximum size of a layer with the list of layer names realizing that maximum size. """ max_size = 0 layer_names = [] modules_to_treat = modules.copy() while len(modules_to_treat) > 0: module_name, module = modules_to_treat.pop(0) modules_children = list(module.named_children()) if isinstance(module, torch.nn.Module) else [] if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes: # No splitting this one so we compare to the max_size size = module_sizes[module_name] if size > max_size: max_size = size layer_names = [module_name] elif size == max_size: layer_names.append(module_name) else: modules_to_treat = [(f"{module_name}.{n}", v) for n, v in modules_children] + modules_to_treat return max_size, layer_names def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None): """ Get the maximum memory available if nothing is passed, converts string to int otherwise. """ import psutil if max_memory is None: if not (torch.cuda.is_available() or is_npu_available() or is_mlu_available() or is_xpu_available()): max_memory = {} else: # Make sure CUDA is initialized on each GPU to have the right memory info. if is_npu_available(): for i in range(torch.npu.device_count()): _ = torch.tensor(0, device=torch.device("npu", i)) max_memory = {i: torch.npu.mem_get_info(i)[0] for i in range(torch.npu.device_count())} elif is_mlu_available(): for i in range(torch.mlu.device_count()): _ = torch.tensor(0, device=torch.device("mlu", i)) max_memory = {i: torch.mlu.mem_get_info(i)[0] for i in range(torch.mlu.device_count())} elif is_xpu_available(): for i in range(torch.xpu.device_count()): _ = torch.tensor(0, device=torch.device("xpu", i)) max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())} else: for i in range(torch.cuda.device_count()): _ = torch.tensor([0], device=i) max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())} # allocate everything in the mps device as the RAM is shared if is_mps_available(): max_memory["mps"] = psutil.virtual_memory().available else: max_memory["cpu"] = psutil.virtual_memory().available return max_memory for key in max_memory: if isinstance(max_memory[key], str): max_memory[key] = convert_file_size_to_int(max_memory[key]) # Need to sort the device by type to make sure that we allocate the gpu first. # As gpu/npu/xpu are represented by int, we need to sort them first. gpu_devices = [k for k in max_memory.keys() if isinstance(k, int)] gpu_devices.sort() # check if gpu/npu/xpu devices are available and if not, throw a warning if is_npu_available(): num_devices = torch.npu.device_count() elif is_mlu_available(): num_devices = torch.mlu.device_count() elif is_xpu_available(): num_devices = torch.xpu.device_count() else: num_devices = torch.cuda.device_count() for device in gpu_devices: if device >= num_devices or device < 0: logger.warning(f"Device {device} is not available, available devices are {list(range(num_devices))}") # Add the other devices in the preset order if they are available all_devices = gpu_devices + [k for k in ["mps", "cpu", "disk"] if k in max_memory.keys()] # Raise an error if a device is not recognized for k in max_memory.keys(): if k not in all_devices: raise ValueError( f"Device {k} is not recognized, available devices are integers(for GPU/XPU), 'mps', 'cpu' and 'disk'" ) max_memory = {k: max_memory[k] for k in all_devices} return max_memory def clean_device_map(device_map: Dict[str, Union[int, str, torch.device]], module_name: str = ""): """ Cleans a device_map by grouping all submodules that go on the same device together. """ # Get the value of the current module and if there is only one split across several keys, regroup it. prefix = "" if module_name == "" else f"{module_name}." values = [v for k, v in device_map.items() if k.startswith(prefix)] if len(set(values)) == 1 and len(values) > 1: for k in [k for k in device_map if k.startswith(prefix)]: del device_map[k] device_map[module_name] = values[0] # Recurse over the children children_modules = [k for k in device_map.keys() if k.startswith(prefix) and len(k) > len(module_name)] idx = len(module_name.split(".")) + 1 if len(module_name) > 0 else 1 children_modules = set(".".join(k.split(".")[:idx]) for k in children_modules) for child in children_modules: clean_device_map(device_map, module_name=child) return device_map def load_offloaded_weights(model, index, offload_folder): """ Loads the weights from the offload folder into the model. Args: model (`torch.nn.Module`): The model to load the weights into. index (`dict`): A dictionary containing the parameter name and its metadata for each parameter that was offloaded from the model. offload_folder (`str`): The folder where the offloaded weights are stored. """ if index is None or len(index) == 0: # Nothing to do return for param_name, metadata in index.items(): if "SCB" in param_name: continue fp16_statistics = None if "weight" in param_name and param_name.replace("weight", "SCB") in index.keys(): weight_name = param_name.replace("weight", "SCB") fp16_statistics = load_offloaded_weight( os.path.join(offload_folder, f"{weight_name}.dat"), index[weight_name] ) tensor_file = os.path.join(offload_folder, f"{param_name}.dat") weight = load_offloaded_weight(tensor_file, metadata) set_module_tensor_to_device(model, param_name, "cpu", value=weight, fp16_statistics=fp16_statistics) def get_balanced_memory( model: nn.Module, max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None, no_split_module_classes: Optional[List[str]] = None, dtype: Optional[Union[str, torch.dtype]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None, low_zero: bool = False, ): """ Compute a `max_memory` dictionary for [`infer_auto_device_map`] that will balance the use of each available GPU. <Tip> All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the meta device (as it would if initialized within the `init_empty_weights` context manager). </Tip> Args: model (`torch.nn.Module`): The model to analyze. max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset. Example: `max_memory={0: "1GB"}`. no_split_module_classes (`List[str]`, *optional*): A list of layer class names that should never be split across device (for instance any layer that has a residual connection). dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*): If provided, special dtypes to consider for some specific weights (will override dtype used as default for all weights). low_zero (`bool`, *optional*): Minimizes the number of weights on GPU 0, which is convenient when it's used for other operations (like the Transformers generate function). """ # Get default / clean up max_memory user_not_set_max_memory = max_memory is None max_memory = get_max_memory(max_memory) if is_npu_available(): num_devices = len([d for d in max_memory if torch.device(d).type == "npu" and max_memory[d] > 0]) elif is_mlu_available(): num_devices = len([d for d in max_memory if torch.device(d).type == "mlu" and max_memory[d] > 0]) elif is_xpu_available(): num_devices = len( [ d for d in max_memory if ( d != "cpu" and (torch.device(d).type == "xpu" or torch.xpu.get_device_properties(d).dev_type == "gpu") ) and max_memory[d] > 0 ] ) else: num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0]) if num_devices == 0: return max_memory if num_devices == 1: # We cannot do low_zero on just one GPU, but we will still reserve some memory for the buffer low_zero = False # If user just asked us to handle memory usage, we should avoid OOM if user_not_set_max_memory: for key in max_memory.keys(): if isinstance(key, int): max_memory[key] *= 0.9 # 90% is a good compromise logger.info( f"We will use 90% of the memory on device {key} for storing the model, and 10% for the buffer to avoid OOM. " "You can set `max_memory` in to a higher value to use more memory (at your own risk)." ) break # only one device module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes) per_gpu = module_sizes[""] // (num_devices - 1 if low_zero else num_devices) # We can't just set the memory to model_size // num_devices as it will end being too small: each GPU will get # slightly less layers and some layers will end up offload at the end. So this function computes a buffer size to # add which is the biggest of: # - the size of no split block (if applicable) # - the mean of the layer sizes if no_split_module_classes is None: no_split_module_classes = [] elif not isinstance(no_split_module_classes, (list, tuple)): no_split_module_classes = [no_split_module_classes] # Identify the size of the no_split_block modules if len(no_split_module_classes) > 0: no_split_children = {} for name, size in module_sizes.items(): if name == "": continue submodule = model for submodule_name in name.split("."): submodule = getattr(submodule, submodule_name) class_name = submodule.__class__.__name__ if class_name in no_split_module_classes and class_name not in no_split_children: no_split_children[class_name] = size if set(no_split_children.keys()) == set(no_split_module_classes): break buffer = max(no_split_children.values()) if len(no_split_children) > 0 else 0 else: buffer = 0 # Compute mean of final modules. In the first dict of module sizes, leaves are the parameters leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0] module_sizes = {n: v for n, v in module_sizes.items() if n not in leaves} # Once removed, leaves are the final modules. leaves = [n for n in module_sizes if len([p for p in module_sizes if n == "" or p.startswith(n + ".")]) == 0] mean_leaves = int(sum([module_sizes[n] for n in leaves]) / max(len(leaves), 1)) buffer = int(1.25 * max(buffer, mean_leaves)) per_gpu += buffer # Sorted list of GPUs id (we may have some gpu ids not included in the our max_memory list - let's ignore them) gpus_idx_list = list( sorted( device_id for device_id, device_mem in max_memory.items() if isinstance(device_id, int) and device_mem > 0 ) ) # The last device is left with max_memory just in case the buffer is not enough. for idx in gpus_idx_list[:-1]: max_memory[idx] = min(max_memory[0] if low_zero and idx == 0 else per_gpu, max_memory[idx]) if low_zero: min_zero = max(0, module_sizes[""] - sum([max_memory[i] for i in range(1, num_devices)])) max_memory[0] = min(min_zero, max_memory[0]) return max_memory def calculate_maximum_sizes(model: torch.nn.Module): "Computes the total size of the model and its largest layer" sizes = compute_module_sizes(model) # `transformers` models store this information for us no_split_modules = getattr(model, "_no_split_modules", None) if no_split_modules is None: no_split_modules = [] modules_to_treat = ( list(model.named_parameters(recurse=False)) + list(model.named_children()) + list(model.named_buffers(recurse=False)) ) largest_layer = get_max_layer_size(modules_to_treat, sizes, no_split_modules) total_size = sizes[""] return total_size, largest_layer def infer_auto_device_map( model: nn.Module, max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None, no_split_module_classes: Optional[List[str]] = None, dtype: Optional[Union[str, torch.dtype]] = None, special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None, verbose: bool = False, clean_result: bool = True, offload_buffers: bool = False, ): """ Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk, such that: - we don't exceed the memory available of any of the GPU. - if offload to the CPU is needed, there is always room left on GPU 0 to put back the layer offloaded on CPU that has the largest size. - if offload to the CPU is needed,we don't exceed the RAM available on the CPU. - if offload to the disk is needed, there is always room left on the CPU to put back the layer offloaded on disk that has the largest size. <Tip> All computation is done analyzing sizes and dtypes of the model parameters. As a result, the model can be on the meta device (as it would if initialized within the `init_empty_weights` context manager). </Tip> Args: model (`torch.nn.Module`): The model to analyze. max_memory (`Dict`, *optional*): A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset. Example: `max_memory={0: "1GB"}`. no_split_module_classes (`List[str]`, *optional*): A list of layer class names that should never be split across device (for instance any layer that has a residual connection). dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. special_dtypes (`Dict[str, Union[str, torch.device]]`, *optional*): If provided, special dtypes to consider for some specific weights (will override dtype used as default for all weights). verbose (`bool`, *optional*, defaults to `False`): Whether or not to provide debugging statements as the function builds the device_map. clean_result (`bool`, *optional*, defaults to `True`): Clean the resulting device_map by grouping all submodules that go on the same device together. offload_buffers (`bool`, *optional*, defaults to `False`): In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as well as the parameters. """ # Get default / clean up max_memory max_memory = get_max_memory(max_memory) if no_split_module_classes is None: no_split_module_classes = [] elif not isinstance(no_split_module_classes, (list, tuple)): no_split_module_classes = [no_split_module_classes] devices = list(max_memory.keys()) if "disk" not in devices: devices.append("disk") gpus = [device for device in devices if device not in ["cpu", "disk"]] # Devices that need to keep space for a potential offloaded layer. if "mps" in gpus: main_devices = ["mps"] elif len(gpus) > 0: main_devices = [gpus[0], "cpu"] else: main_devices = ["cpu"] module_sizes = compute_module_sizes(model, dtype=dtype, special_dtypes=special_dtypes) tied_parameters = find_tied_parameters(model) if check_tied_parameters_in_config(model) and len(tied_parameters) == 0: logger.warn( "The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function." ) device_map = OrderedDict() current_device = 0 current_memory_used = 0 device_memory_used = {} device_buffer_sizes = {} # Direct submodules and parameters modules_to_treat = ( list(model.named_parameters(recurse=False)) + list(model.named_children()) + list(model.named_buffers(recurse=False)) ) # Initialize maximum largest layer, to know which space to keep in memory max_layer_size, max_layer_names = get_max_layer_size(modules_to_treat, module_sizes, no_split_module_classes) # Ready ? This is going to be a bit messy. while len(modules_to_treat) > 0: name, module = modules_to_treat.pop(0) if verbose: print(f"\nTreating module {name}.") # Max size in the remaining layers may have changed since we took one, so we maybe update it. max_layer_names = [n for n in max_layer_names if n != name and not n.startswith(name + ".")] if len(max_layer_names) == 0: max_layer_size, max_layer_names = get_max_layer_size( [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)], module_sizes, no_split_module_classes, ) # Assess size needed module_size = module_sizes[name] # We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module # and the other is not. # Note: If we are currently processing the name `compute.weight`, an other parameter named e.g. `compute.weight_submodule.parameter` # needs to be considered outside the current module, hence the check with additional dots. tied_param_goups = [ tied_group for tied_group in tied_parameters if any(name + "." in k + "." for k in tied_group) and not all(name + "." in k + "." for k in tied_group) ] if verbose and len(tied_param_goups) > 0: print(f" Found the relevant tied param groups {tied_param_goups}") # Then we keep track of all the parameters that are tied to the current module, but not in the current module tied_params = sum( [[p for p in tied_group if name + "." not in p + "."] for tied_group in tied_param_goups], [] ) if verbose and len(tied_params) > 0: print(f" So those parameters need to be taken into account {tied_params}") device = devices[current_device] current_max_size = max_memory[device] if device != "disk" else None current_memory_reserved = 0 # Reduce max size available by the largest layer. if devices[current_device] in main_devices: current_max_size = current_max_size - max_layer_size current_memory_reserved = max_layer_size # Case 1 -> We're too big! if current_max_size is not None and current_memory_used + module_size > current_max_size: # Split or not split? modules_children = ( [] if isinstance(module, nn.Parameter) or isinstance(module, torch.Tensor) else list(module.named_children()) ) if verbose: print( f"Not enough space on {devices[current_device]} to put {name} (space available " f"{current_max_size - current_memory_used}, module size {module_size})." ) if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes: # -> no split, we go to the next device if verbose: print("This module cannot be split, going to the next device.") device_memory_used[device] = current_memory_used + current_memory_reserved current_device += 1 modules_to_treat = [(name, module)] + modules_to_treat current_memory_used = 0 else: # -> split, we replace the module studied by its children + parameters if verbose: print(f"Splitting {name}.") modules_children = list(module.named_parameters(recurse=False)) + modules_children modules_to_treat = [(f"{name}.{n}", v) for n, v in modules_children] + modules_to_treat # Update the max layer size. max_layer_size, max_layer_names = get_max_layer_size( [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)], module_sizes, no_split_module_classes, ) # Case 2, it fits! We're not entirely out of the wood though, because we may have some tied parameters. elif len(tied_params) > 0: # First locate all tied modules tied_module_names = [] tied_modules = [] for tied_param in tied_params: tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0] tied_module_names.append(modules_to_treat[tied_module_index][0]) tied_modules.append(modules_to_treat[tied_module_index][1]) if verbose: print( f" It looks like {name} is going to fit on {devices[current_device]} but we have tied " f"parameters to account for.\n - Names {tied_params}\n - Module names {tied_module_names}" ) # Let's see if it all fits first module_size_with_ties = module_size for tied_param, tied_module_name in zip(tied_params, tied_module_names): module_size_with_ties += module_sizes[tied_module_name] - module_sizes[tied_param] if current_max_size is None or current_memory_used + module_size_with_ties <= current_max_size: # We really really fit! if verbose: print(f"Putting {name} and {tied_module_names} on {devices[current_device]}.") current_memory_used += module_size_with_ties device_map[name] = devices[current_device] for tied_module_name in tied_module_names: if tied_module_name in [m[0] for m in modules_to_treat]: # The module may have been removed by a previous iteration of this loop. tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][ 0 ] modules_to_treat.pop(tied_module_index) device_map[tied_module_name] = devices[current_device] if not offload_buffers and isinstance(module, nn.Module): current_buffer_size = compute_module_total_buffer_size( module, dtype=dtype, special_dtypes=special_dtypes ) device_buffer_sizes[device] = device_buffer_sizes.get(device, 0) + current_buffer_size else: # We don't fit with the tied modules. Next question is: can we split one of the tied modules to make it # smaller or do we need to go on the next device? if verbose: print( f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space " f"available {current_max_size - current_memory_used}, needed size {module_size_with_ties})." ) split_happened = False for tied_module_name, tied_module in zip(tied_module_names, tied_modules): tied_module_children = list(tied_module.named_children()) if len(tied_module_children) == 0 or tied_module.__class__.__name__ in no_split_module_classes: # can't break this one. continue if verbose: print(f"Splitting {tied_module_name}.") tied_module_children = list(tied_module.named_parameters(recurse=False)) + tied_module_children tied_module_children = [(f"{tied_module_name}.{n}", v) for n, v in tied_module_children] tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n == tied_module_name][0] modules_to_treat = ( [(name, module)] + modules_to_treat[:tied_module_index] + tied_module_children + modules_to_treat[tied_module_index + 1 :] ) # Update the max layer size. max_layer_size, max_layer_names = get_max_layer_size( [(n, m) for n, m in modules_to_treat if isinstance(m, torch.nn.Module)], module_sizes, no_split_module_classes, ) split_happened = True break if not split_happened: # If the tied module is not split, we go to the next device if verbose: print("None of the tied module can be split, going to the next device.") device_memory_used[device] = current_memory_used + current_memory_reserved current_device += 1 modules_to_treat = [(name, module)] + modules_to_treat current_memory_used = 0 else: if verbose: if current_max_size is None: print(f"Putting {name} (size={module_size}) on {devices[current_device]}.") else: print( f"Putting {name} (size={module_size}) on {devices[current_device]} " f"(available={current_max_size - current_memory_used})." ) current_memory_used += module_size device_memory_used[device] = current_memory_used + current_memory_reserved device_map[name] = devices[current_device] if not offload_buffers and isinstance(module, nn.Module): current_buffer_size = compute_module_total_buffer_size( module, dtype=dtype, special_dtypes=special_dtypes ) device_buffer_sizes[device] = device_buffer_sizes.get(device, 0) + current_buffer_size if clean_result: device_map = clean_device_map(device_map) non_gpu_buffer_size = device_buffer_sizes.get("cpu", 0) + device_buffer_sizes.get("disk", 0) if non_gpu_buffer_size > 0 and not offload_buffers: is_buffer_fit_any_gpu = False for gpu_device, gpu_max_memory in max_memory.items(): if gpu_device == "cpu" or gpu_device == "disk": continue if not is_buffer_fit_any_gpu: gpu_memory_used = device_memory_used.get(gpu_device, 0) if gpu_max_memory >= non_gpu_buffer_size + gpu_memory_used: is_buffer_fit_any_gpu = True if len(gpus) > 0 and not is_buffer_fit_any_gpu: warnings.warn( f"Current model requires {non_gpu_buffer_size} bytes of buffer for offloaded layers, which seems does " f"not fit any GPU's remaining memory. If you are experiencing a OOM later, please consider using " f"offload_buffers=True." ) return device_map def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]): """ Checks a device map covers everything in a given model. Args: model (`torch.nn.Module`): The model to check the device map against. device_map (`Dict[str, Union[int, str, torch.device]]`): The device map to check. """ all_model_tensors = [name for name, _ in model.state_dict().items()] for module_name in device_map.keys(): if module_name == "": all_model_tensors.clear() break else: all_model_tensors = [ name for name in all_model_tensors if not name == module_name and not name.startswith(module_name + ".") ] if len(all_model_tensors) > 0: non_covered_params = ", ".join(all_model_tensors) raise ValueError( f"The device_map provided does not give any device for the following parameters: {non_covered_params}" ) def load_state_dict(checkpoint_file, device_map=None): """ Load a checkpoint from a given file. If the checkpoint is in the safetensors format and a device map is passed, the weights can be fast-loaded directly on the GPU. Args: checkpoint_file (`str`): The path to the checkpoint to load. device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. """ if checkpoint_file.endswith(".safetensors"): with safe_open(checkpoint_file, framework="pt") as f: metadata = f.metadata() weight_names = f.keys() if metadata is None: logger.warn( f"The safetensors archive passed at {checkpoint_file} does not contain metadata. " "Make sure to save your model with the `save_pretrained` method. Defaulting to 'pt' metadata." ) metadata = {"format": "pt"} if metadata.get("format") not in ["pt", "tf", "flax"]: raise OSError( f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure " "you save your model with the `save_pretrained` method." ) elif metadata["format"] != "pt": raise ValueError(f"The checkpoint passed was saved with {metadata['format']}, we need a the pt format.") if device_map is None: return safe_load_file(checkpoint_file) else: # if we only have one device we can load everything directly if len(set(device_map.values())) == 1: return safe_load_file(checkpoint_file, device=list(device_map.values())[0]) devices = list(set(device_map.values()) - {"disk"}) # cpu device should always exist as fallback option if "cpu" not in devices: devices.append("cpu") # For each device, get the weights that go there device_weights = {device: [] for device in devices} for module_name, device in device_map.items(): if device in devices: device_weights[device].extend( [k for k in weight_names if k == module_name or k.startswith(module_name + ".")] ) # all weights that haven't defined a device should be loaded on CPU device_weights["cpu"].extend([k for k in weight_names if k not in sum(device_weights.values(), [])]) tensors = {} if is_tqdm_available(): progress_bar = tqdm( main_process_only=False, total=sum([len(device_weights[device]) for device in devices]), unit="w", smoothing=0, leave=False, ) else: progress_bar = None for device in devices: target_device = device if is_xpu_available(): current_safetensors_version = packaging.version.parse(importlib.metadata.version("safetensors")) if compare_versions(current_safetensors_version, "<", "0.4.2"): raise ModuleNotFoundError( f"You need at least safetensors 0.4.2 for Intel GPU, while you have {current_safetensors_version}" ) if isinstance(device, int): target_device = f"xpu:{device}" with safe_open(checkpoint_file, framework="pt", device=target_device) as f: for key in device_weights[device]: if progress_bar is not None: progress_bar.set_postfix(dev=device, refresh=False) progress_bar.set_description(key) tensors[key] = f.get_tensor(key) if progress_bar is not None: progress_bar.update() if progress_bar is not None: progress_bar.close() return tensors else: return torch.load(checkpoint_file, map_location=torch.device("cpu")) def get_state_dict_offloaded_model(model: nn.Module): """ Returns the state dictionary for an offloaded model via iterative onloading Args: model (`torch.nn.Module`): The offloaded model we want to save """ from ..hooks import AlignDevicesHook state_dict = {} placeholders = set() for name, module in model.named_modules(): if name == "": continue if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload: original_device = module._hf_hook.execution_device # assign hook execution device to cpu module._hf_hook.execution_device = "cpu" # onload meta tensors to execution device try: module._hf_hook.pre_forward(module) except MemoryError: raise MemoryError("Offloaded module must fit in CPU memory to call save_model!") from None module_state_dict = module.state_dict() # offload meta tensors from cpu module._hf_hook.post_forward(module, torch.tensor([])) # re-assign hook to original execution device module._hf_hook.execution_device = original_device else: module_state_dict = module.state_dict() for key in module_state_dict: # ignore placeholder parameters that are still on the meta device if module_state_dict[key].device == torch.device("meta"): placeholders.add(name + f".{key}") continue params = module_state_dict[key] state_dict[name + f".{key}"] = params for key in placeholders.copy(): if key in state_dict: placeholders.remove(key) if placeholders: logger.warning(f"The following tensors were not saved because they were still on meta device: {placeholders}") return state_dict def load_checkpoint_in_model( model: nn.Module, checkpoint: Union[str, os.PathLike], device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None, offload_folder: Optional[Union[str, os.PathLike]] = None, dtype: Optional[Union[str, torch.dtype]] = None, offload_state_dict: bool = False, offload_buffers: bool = False, keep_in_fp32_modules: List[str] = None, offload_8bit_bnb: bool = False, strict: bool = False, ): """ Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are loaded. <Tip warning={true}> Once loaded across devices, you still need to call [`dispatch_model`] on your model to make it able to run. To group the checkpoint loading and dispatch in one single call, use [`load_checkpoint_and_dispatch`]. </Tip> Args: model (`torch.nn.Module`): The model in which we want to load a checkpoint. checkpoint (`str` or `os.PathLike`): The folder checkpoint to load. It can be: - a path to a file containing a whole model state dict - a path to a `.json` file containing the index to a sharded checkpoint - a path to a folder containing a unique `.index.json` file and the shards of a checkpoint. - a path to a folder containing a unique pytorch_model.bin or a model.safetensors file. device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. offload_folder (`str` or `os.PathLike`, *optional*): If the `device_map` contains any value `"disk"`, the folder where we will offload weights. dtype (`str` or `torch.dtype`, *optional*): If provided, the weights will be converted to that type when loaded. offload_state_dict (`bool`, *optional*, defaults to `False`): If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if the weight of the CPU state dict + the biggest shard does not fit. offload_buffers (`bool`, *optional*, defaults to `False`): Whether or not to include the buffers in the weights offloaded to disk. keep_in_fp32_modules(`List[str]`, *optional*): A list of the modules that we keep in `torch.float32` dtype. offload_8bit_bnb (`bool`, *optional*): Whether or not to enable offload of 8-bit modules on cpu/disk. strict (`bool`, *optional*, defaults to `False`): Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's state_dict. """ if offload_8bit_bnb: from .bnb import quantize_and_offload_8bit tied_params = find_tied_parameters(model) if check_tied_parameters_in_config(model) and len(tied_params) == 0: logger.warn( "The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function." ) if device_map is not None: check_tied_parameters_on_same_device(tied_params, device_map) if offload_folder is None and device_map is not None and "disk" in device_map.values(): raise ValueError( "At least one of the model submodule will be offloaded to disk, please pass along an `offload_folder`." ) elif offload_folder is not None and device_map is not None and "disk" in device_map.values(): os.makedirs(offload_folder, exist_ok=True) if isinstance(dtype, str): # We accept "torch.float16" or just "float16" dtype = dtype.replace("torch.", "") dtype = getattr(torch, dtype) checkpoint_files = None index_filename = None if os.path.isfile(checkpoint): if str(checkpoint).endswith(".json"): index_filename = checkpoint else: checkpoint_files = [checkpoint] elif os.path.isdir(checkpoint): # check if the whole state dict is present potential_state_bin = [f for f in os.listdir(checkpoint) if f == WEIGHTS_NAME] potential_state_safetensor = [f for f in os.listdir(checkpoint) if f == SAFE_WEIGHTS_NAME] if len(potential_state_bin) == 1: checkpoint_files = [os.path.join(checkpoint, potential_state_bin[0])] elif len(potential_state_safetensor) == 1: checkpoint_files = [os.path.join(checkpoint, potential_state_safetensor[0])] else: # otherwise check for sharded checkpoints potential_index = [f for f in os.listdir(checkpoint) if f.endswith(".index.json")] if len(potential_index) == 0: raise ValueError( f"{checkpoint} is not a folder containing a `.index.json` file or a {WEIGHTS_NAME} or a {SAFE_WEIGHTS_NAME} file" ) elif len(potential_index) == 1: index_filename = os.path.join(checkpoint, potential_index[0]) else: raise ValueError( f"{checkpoint} containing more than one `.index.json` file, delete the irrelevant ones." ) else: raise ValueError( "`checkpoint` should be the path to a file containing a whole state dict, or the index of a sharded " f"checkpoint, or a folder containing a sharded checkpoint or the whole state dict, but got {checkpoint}." ) if index_filename is not None: checkpoint_folder = os.path.split(index_filename)[0] with open(index_filename) as f: index = json.loads(f.read()) if "weight_map" in index: index = index["weight_map"] checkpoint_files = sorted(list(set(index.values()))) checkpoint_files = [os.path.join(checkpoint_folder, f) for f in checkpoint_files] # Logic for missing/unexepected keys goes here. offload_index = {} if offload_state_dict: state_dict_folder = tempfile.mkdtemp() state_dict_index = {} unexpected_keys = set() model_keys = set(model.state_dict().keys()) buffer_names = [name for name, _ in model.named_buffers()] for checkpoint_file in checkpoint_files: loaded_checkpoint = load_state_dict(checkpoint_file, device_map=device_map) if device_map is None: model.load_state_dict(loaded_checkpoint, strict=strict) unexpected_keys.update(set(loaded_checkpoint.keys()) - model_keys) else: for param_name, param in loaded_checkpoint.items(): # skip SCB parameter (for 8-bit serialization) if "SCB" in param_name: continue if param_name not in model_keys: unexpected_keys.add(param_name) if not strict: continue # Skip loading this parameter. module_name = param_name while len(module_name) > 0 and module_name not in device_map: module_name = ".".join(module_name.split(".")[:-1]) if module_name == "" and "" not in device_map: # TODO: group all errors and raise at the end. raise ValueError(f"{param_name} doesn't have any device set.") param_device = device_map[module_name] new_dtype = dtype if dtype is not None and torch.is_floating_point(param): if keep_in_fp32_modules is not None and dtype == torch.float16: proceed = False for key in keep_in_fp32_modules: if ((key in param_name) and (key + "." in param_name)) or key == param_name: proceed = True break if proceed: new_dtype = torch.float32 if "weight" in param_name and param_name.replace("weight", "SCB") in loaded_checkpoint.keys(): if param.dtype == torch.int8: fp16_statistics = loaded_checkpoint[param_name.replace("weight", "SCB")] else: fp16_statistics = None if param_device == "disk": if offload_buffers or param_name not in buffer_names: if new_dtype is None: new_dtype = param.dtype if offload_8bit_bnb: quantize_and_offload_8bit( model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics ) continue else: set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype) offload_weight(param, param_name, offload_folder, index=offload_index) elif param_device == "cpu" and offload_state_dict: if new_dtype is None: new_dtype = param.dtype if offload_8bit_bnb: quantize_and_offload_8bit( model, param, param_name, new_dtype, state_dict_folder, state_dict_index, fp16_statistics ) else: set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype) offload_weight(param, param_name, state_dict_folder, index=state_dict_index) else: set_module_tensor_to_device( model, param_name, param_device, value=param, dtype=new_dtype, fp16_statistics=fp16_statistics, ) # Force Python to clean up. del loaded_checkpoint gc.collect() if not strict and len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {checkpoint} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}. This may or may not be an issue - make sure that the checkpoint does not have unnecessary parameters, or that the model definition correctly corresponds to the checkpoint." ) save_offload_index(offload_index, offload_folder) # Load back offloaded state dict on CPU if offload_state_dict: load_offloaded_weights(model, state_dict_index, state_dict_folder) shutil.rmtree(state_dict_folder) retie_parameters(model, tied_params) def get_mixed_precision_context_manager(native_amp: bool = False, autocast_kwargs: AutocastKwargs = None): """ Return a context manager for autocasting mixed precision Args: native_amp (`bool`, *optional*, defaults to False): Whether mixed precision is actually enabled. cache_enabled (`bool`, *optional*, defaults to True): Whether the weight cache inside autocast should be enabled. """ state = AcceleratorState() if autocast_kwargs is None: autocast_kwargs = {} else: autocast_kwargs = autocast_kwargs.to_kwargs() if native_amp: device_type = ( "cuda" if (state.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_gpu=True)) else state.device.type ) if state.mixed_precision == "fp16": return torch.autocast(device_type=device_type, dtype=torch.float16, **autocast_kwargs) elif state.mixed_precision == "bf16" and state.distributed_type in [ DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.FSDP, DistributedType.XLA, ]: return torch.autocast(device_type=device_type, dtype=torch.bfloat16, **autocast_kwargs) else: return torch.autocast(device_type=device_type, **autocast_kwargs) else: return contextlib.nullcontext()
accelerate/src/accelerate/utils/modeling.py/0
{ "file_path": "accelerate/src/accelerate/utils/modeling.py", "repo_id": "accelerate", "token_count": 34738 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from pathlib import Path from unittest.mock import patch import torch from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError from accelerate.commands.config.config_args import BaseConfig, ClusterConfig, SageMakerConfig from accelerate.commands.estimate import estimate_command, estimate_command_parser, gather_data from accelerate.commands.launch import _validate_launch_command, launch_command_parser from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import ( DEFAULT_LAUNCH_COMMAND, get_launch_command, path_in_accelerate_package, require_multi_device, require_timm, require_transformers, run_command, ) from accelerate.utils import patch_environment from accelerate.utils.launch import prepare_simple_launcher_cmd_env class AccelerateLauncherTester(unittest.TestCase): """ Test case for verifying the `accelerate launch` CLI operates correctly. If a `default_config.yaml` file is located in the cache it will temporarily move it for the duration of the tests. """ test_file_path = path_in_accelerate_package("test_utils", "scripts", "test_cli.py") notebook_launcher_path = path_in_accelerate_package("test_utils", "scripts", "test_notebook.py") config_folder = Path.home() / ".cache/huggingface/accelerate" config_file = "default_config.yaml" config_path = config_folder / config_file changed_path = config_folder / "_default_config.yaml" test_config_path = Path("tests/test_configs") @classmethod def setUpClass(cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def tearDownClass(cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def test_no_config(self): if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd = get_launch_command(multi_gpu=True) else: cmd = DEFAULT_LAUNCH_COMMAND cmd.append(self.test_file_path) execute_subprocess_async(cmd, env=os.environ.copy()) def test_config_compatibility(self): for config in sorted(self.test_config_path.glob("**/*.yaml")): if "invalid" in str(config) or "mpi" in str(config): continue with self.subTest(config_file=config): cmd = get_launch_command(config_file=config) + [self.test_file_path] execute_subprocess_async(cmd) def test_invalid_keys(self): config_path = self.test_config_path / "invalid_keys.yaml" with self.assertRaises( RuntimeError, msg="The config file at 'invalid_keys.yaml' had unknown keys ('another_invalid_key', 'invalid_key')", ): cmd = get_launch_command(config_file=config_path) + [self.test_file_path] execute_subprocess_async(cmd) def test_accelerate_test(self): execute_subprocess_async(["accelerate", "test"]) @require_multi_device def test_notebook_launcher(self): """ This test checks a variety of situations and scenarios with the `notebook_launcher` """ cmd = ["python", self.notebook_launcher_path] with patch_environment(omp_num_threads=1, accelerate_num_processes=2): run_command(cmd) def test_mpi_multicpu_config_cmd(self): """ Parses a launch command with a test file and the 0_28_0_mpi.yaml config. Tests getting the command and environment vars and verifies the mpirun command arg values. """ mpi_config_path = str(self.test_config_path / "0_28_0_mpi.yaml") test_file_arg = "--cpu" with patch("sys.argv", ["accelerate", str(self.test_file_path), test_file_arg]): parser = launch_command_parser() args = parser.parse_args() args.config_file = mpi_config_path args, _, _ = _validate_launch_command(args) # Mock out the check for mpirun version to simulate Intel MPI with patch("accelerate.utils.launch.which", return_value=True): with patch("accelerate.utils.launch.subprocess.check_output", return_value=b"Intel MPI"): cmd, _ = prepare_simple_launcher_cmd_env(args) # Verify the mpirun command args expected_mpirun_cmd = ["mpirun", "-f", "/home/user/hostfile", "-ppn", "4", "-n", "16"] self.assertGreater(len(cmd), len(expected_mpirun_cmd)) generated_mpirun_cmd = cmd[0 : len(expected_mpirun_cmd)] self.assertEqual(expected_mpirun_cmd, generated_mpirun_cmd) # Verify the python script and args in the mpirun command python_script_cmd = cmd[len(expected_mpirun_cmd) :] self.assertEqual(len(python_script_cmd), 3) self.assertEqual(python_script_cmd[1], str(self.test_file_path)) self.assertEqual(python_script_cmd[2], test_file_arg) class LaunchArgTester(unittest.TestCase): """ Test cases revolving around the CLI wrappers """ parser = launch_command_parser() def test_hyphen(self): # Try a little from each cluster args = ["--config-file", "test.yaml", "test.py"] result = self.parser.parse_args(args) assert result.config_file == "test.yaml" assert result.multi_gpu is False args = ["--multi-gpu", "--num-processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.num_processes == 4 # And use a mix args = ["--multi-gpu", "--use-deepspeed", "--use-fsdp", "--num_processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.use_deepspeed is True assert result.use_fsdp is True assert result.num_processes == 4 def test_underscore(self): # Try a little from each cluster args = ["--config_file", "test.yaml", "test.py"] result = self.parser.parse_args(args) assert result.config_file == "test.yaml" args = ["--multi_gpu", "--num_processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.num_processes == 4 # And use a mix args = ["--multi_gpu", "--use_deepspeed", "--use_fsdp", "--num-processes", "4", "test.py"] result = self.parser.parse_args(args) assert result.multi_gpu is True assert result.use_deepspeed is True assert result.use_fsdp is True assert result.num_processes == 4 def test_duplicate_entities(self): help_return = self.parser.format_help() args = self.parser.parse_args(["test.py"]) for arg in args.__dict__: if "_" in arg: bad_arg = f'--{arg.replace("_", "-")}' # Need an exception for `num-processes` since it's in the docstring if bad_arg == "--num-processes": assert help_return.count(bad_arg) == 1, f"Found {bad_arg} in `accelerate launch -h`" else: assert bad_arg not in help_return, f"Found {bad_arg} in `accelerate launch -h`" class ClusterConfigTester(unittest.TestCase): """ Test case for verifying the config dataclasses work """ def test_base_config(self): # Tests that all the dataclasses can be initialized config = BaseConfig( compute_environment="LOCAL_MACHINE", distributed_type="NO", mixed_precision="fp16", debug=False, use_cpu=False, ) assert config.compute_environment == "LOCAL_MACHINE" assert config.distributed_type == "NO" assert config.mixed_precision == "fp16" assert config.debug is False def test_cluster_config(self): # First normally config = ClusterConfig( compute_environment="LOCAL_MACHINE", distributed_type="NO", mixed_precision="fp16", num_processes=2, debug=False, use_cpu=False, ) assert config.compute_environment == "LOCAL_MACHINE" assert config.distributed_type == "NO" assert config.mixed_precision == "fp16" assert config.debug is False # Then check with other compute environments config = ClusterConfig( compute_environment="LOCAL_MACHINE", distributed_type="MULTI_GPU", mixed_precision="fp16", debug=False, num_processes=2, enable_cpu_affinity=True, use_cpu=False, ) assert config.distributed_type == "MULTI_GPU" assert config.num_processes == 2 assert config.enable_cpu_affinity is True def test_sagemaker_config(self): config = SageMakerConfig( compute_environment="AMAZON_SAGEMAKER", distributed_type="NO", mixed_precision="fp16", debug=False, use_cpu=False, ec2_instance_type="MY_TYPE", iam_role_name="MY_ROLE", ) assert config.compute_environment == "AMAZON_SAGEMAKER" assert config.ec2_instance_type == "MY_TYPE" assert config.iam_role_name == "MY_ROLE" class TpuConfigTester(unittest.TestCase): """ Test case for verifying the `accelerate tpu-config` CLI passes the right `gcloud` command. """ tpu_name = "test-tpu" tpu_zone = "us-central1-a" command = "ls" cmd = ["accelerate", "tpu-config"] base_output = "cd /usr/share" command_file = "tests/test_samples/test_command_file.sh" gcloud = "Running gcloud compute tpus tpu-vm ssh" def test_base(self): output = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"], return_stdout=True, ) assert f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" in output def test_base_backward_compatibility(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=True, ) assert f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" in output def test_with_config_file(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"], return_stdout=True ) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_with_config_file_and_command(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"], return_stdout=True, ) assert f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" in output def test_with_config_file_and_multiple_command(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", 'echo "Hello World"', "--debug", ], return_stdout=True, ) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' in output ) def test_with_config_file_and_command_file(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"], return_stdout=True, ) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_with_config_file_and_command_file_backward_compatibility(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=True, ) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_accelerate_install(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"], return_stdout=True, ) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' in output ) def test_accelerate_install_version(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ], return_stdout=True, ) assert ( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' in output ) class ModelEstimatorTester(unittest.TestCase): """ Test case for checking the output of `accelerate estimate-memory` is correct. - Uses `estimate_command` when trying to catch raised errors - Uses `gather_data` when just verifying the calculations are correct """ parser = estimate_command_parser() def test_invalid_model_name(self): with self.assertRaises( RepositoryNotFoundError, msg="Repo for model `somebrokenname` does not exist on the Hub" ): args = self.parser.parse_args(["somebrokenname"]) estimate_command(args) @require_timm def test_invalid_model_name_timm(self): with self.assertRaises(RuntimeError, msg="Tried to load `muellerzr/dummy` with `timm` but"): args = self.parser.parse_args(["muellerzr/dummy", "--library_name", "timm"]) estimate_command(args) @require_transformers def test_invalid_model_name_transformers(self): with self.assertRaises(RuntimeError, msg="Tried to load `muellerzr/dummy` with `transformers` but"): args = self.parser.parse_args(["muellerzr/dummy", "--library_name", "transformers"]) estimate_command(args) def test_no_metadata(self): with self.assertRaises( ValueError, msg="Model `muellerzr/dummy` does not have any library metadata on the Hub" ): args = self.parser.parse_args(["muellerzr/dummy"]) estimate_command(args) def test_gated(self): with self.assertRaises(GatedRepoError, msg="Repo for model `meta-llama/Llama-2-7b-hf` is gated"): args = self.parser.parse_args(["meta-llama/Llama-2-7b-hf"]) with patch_environment(hf_hub_disable_implicit_token="1"): estimate_command(args) @require_transformers def test_remote_code(self): # Also tests that custom `Auto` classes work args = self.parser.parse_args(["hf-internal-testing/test_dynamic_model"]) with self.assertRaises(ValueError, msg="--trust_remote_code"): gather_data(args) # Verify it works with the flag args = self.parser.parse_args(["hf-internal-testing/test_dynamic_model", "--trust_remote_code"]) gather_data(args) @require_transformers def test_explicit_dtypes(self): args = self.parser.parse_args(["bert-base-cased", "--dtypes", "float32", "float16"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 89075712, 433249280 # Check that full precision -> int4 is calculating correctly assert len(output) == 2, f"Output was missing a precision, expected 2 but received {len(output)}" for i, factor in enumerate([1, 2]): precision = 32 // factor precision_str = f"float{precision}" largest_layer_estimate = largest_layer / factor total_size_estimate = total_size / factor total_training_size_estimate = total_size_estimate * 4 assert precision_str == output[i][0], f"Output is missing precision `{precision_str}`" assert ( largest_layer_estimate == output[i][1] ), f"Calculation for largest layer size in `{precision_str}` is incorrect." assert ( total_size_estimate == output[i][2] ), f"Calculation for total size in `{precision_str}` is incorrect." assert total_training_size_estimate == max( output[i][3].values() ), f"Calculation for total training size in `{precision_str}` is incorrect." @require_transformers def test_transformers_model(self): args = self.parser.parse_args(["bert-base-cased", "--dtypes", "float32"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 89075712, 433249280 assert ( largest_layer == output[0][1] ), f"Calculation for largest layer size in `fp32` is incorrect, expected {largest_layer} but received {output[0][1]}" assert ( total_size == output[0][2] ), f"Calculation for total size in `fp32` is incorrect, expected {total_size} but received {output[0][2]}" @require_transformers def test_no_split_modules(self): # idefics-80b-instruct has ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] args = self.parser.parse_args(["HuggingFaceM4/idefics-80b-instruct", "--dtypes", "float32"]) output = gather_data(args) # without factoring in `no_split` modules, the largest layer is 721420288 bytes assert output[0][1] != 721420288, "Largest layer calculation incorrect, did not factor in `no_split` modules." # the real answer is 3240165632 bytes assert output[0][1] == 3240165632 @require_timm def test_timm_model(self): args = self.parser.parse_args(["timm/resnet50.a1_in1k", "--library_name", "timm"]) output = gather_data(args) # The largest layer and total size of the model in bytes largest_layer, total_size = 9437184, 102441032 assert ( largest_layer == output[0][1] ), f"Calculation for largest layer size in `fp32` is incorrect, expected {largest_layer} but received {output[0][1]}" assert ( total_size == output[0][2] ), f"Calculation for total size in `fp32` is incorrect, expected {total_size} but received {output[0][2]}"
accelerate/tests/test_cli.py/0
{ "file_path": "accelerate/tests/test_cli.py", "repo_id": "accelerate", "token_count": 9040 }
9
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import torch from accelerate import Accelerator from accelerate.big_modeling import dispatch_model from accelerate.test_utils import ( DEFAULT_LAUNCH_COMMAND, assert_exception, device_count, execute_subprocess_async, get_launch_command, path_in_accelerate_package, require_huggingface_suite, require_multi_device, require_multi_gpu, require_non_torch_xla, require_pippy, ) from accelerate.utils import patch_environment class MultiDeviceTester(unittest.TestCase): test_file_path = path_in_accelerate_package("test_utils", "scripts", "test_script.py") data_loop_file_path = path_in_accelerate_package("test_utils", "scripts", "test_distributed_data_loop.py") operation_file_path = path_in_accelerate_package("test_utils", "scripts", "test_ops.py") pippy_file_path = path_in_accelerate_package("test_utils", "scripts", "external_deps", "test_pippy.py") @require_multi_device def test_multi_device(self): print(f"Found {device_count} devices.") cmd = DEFAULT_LAUNCH_COMMAND + [self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd) @require_multi_device def test_multi_device_ops(self): print(f"Found {device_count} devices.") cmd = DEFAULT_LAUNCH_COMMAND + [self.operation_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd) @require_multi_device def test_pad_across_processes(self): print(f"Found {device_count} devices.") cmd = DEFAULT_LAUNCH_COMMAND + [inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd) @require_non_torch_xla @require_multi_gpu def test_distributed_data_loop(self): """ This TestCase checks the behaviour that occurs during distributed training or evaluation, when the batch size does not evenly divide the dataset size. """ print(f"Found {device_count} devices, using 2 devices only") cmd = get_launch_command(num_processes=2) + [self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices="0,1"): execute_subprocess_async(cmd) @require_multi_gpu @require_pippy @require_huggingface_suite def test_pippy(self): """ Checks the integration with the pippy framework """ print(f"Found {device_count} devices") cmd = get_launch_command(multi_gpu=True, num_processes=device_count) + [self.pippy_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd) if __name__ == "__main__": accelerator = Accelerator() shape = (accelerator.state.process_index + 2, 10) tensor = torch.randint(0, 10, shape).to(accelerator.device) error_msg = "" tensor1 = accelerator.pad_across_processes(tensor) if tensor1.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensor1.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensor1[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensor1[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." tensor2 = accelerator.pad_across_processes(tensor, pad_first=True) if tensor2.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensor2.shape} but should have {accelerator.state.num_processes + 1} at dim 0." index = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensor2[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensor2[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg) # Check device_map accelerator.print("Test `device_map` cannot be prepared.") class ModelForTest(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(3, 4) self.batchnorm = torch.nn.BatchNorm1d(4) self.linear2 = torch.nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1} model = ModelForTest() dispatch_model(model, device_map=device_map) with assert_exception(ValueError, "You can't train a model that has been loaded with"): model = accelerator.prepare_model(model)
accelerate/tests/test_multigpu.py/0
{ "file_path": "accelerate/tests/test_multigpu.py", "repo_id": "accelerate", "token_count": 2091 }
10
#!/bin/bash #SBATCH --ntasks-per-node=1 #SBATCH --exclusive #SBATCH --gres=gpu:8 #SBATCH --partition=hopper-prod # Adjust this for your cluster #SBATCH --output=/fsx/h4/logs/%x-%j.out # Adjust this for your cluster #SBATCH --err=/fsx/h4/logs/%x-%j.err # Adjust this for your cluster set -x -e source ~/.bashrc conda activate handbook echo "START TIME: $(date)" MODEL=$1 TASK=$2 PRECISION=$3 ACCELERATOR=$4 OPTIONAL_ARGS=$5 # Training setup NUM_NODES=$SLURM_NNODES GPUS_PER_NODE=8 WORLD_SIZE=$(($NUM_NODES*$GPUS_PER_NODE)) # Due to conflicts between Accelerate's DeepSpeed configs and Transformers' TrainingArguments, we need to parse the gradient accumulation steps from the config file to ensure they match CONFIG_FILE=recipes/$MODEL/$TASK/config_$PRECISION.yaml GRAD_ACC_STEPS=$(grep 'gradient_accumulation_steps' $CONFIG_FILE | awk '{print $2}') # Split the string into individual arguments IFS=' ' read -ra ARGS <<< "$OPTIONAL_ARGS" # Loop through the arguments and find the one with "--gradient_accumulation_steps" for arg in "${ARGS[@]}"; do if [[ "$arg" == "--gradient_accumulation_steps="* ]]; then # Extract the value after the equals sign GRAD_ACC_STEPS="${arg#*=}" break # Exit the loop once we find the desired argument fi done echo "Gradient accumulation steps: $GRAD_ACC_STEPS" # so processes know who to talk to MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) MASTER_PORT=6000 export CMD=" \ scripts/run_$TASK.py $CONFIG_FILE $OPTIONAL_ARGS " export LAUNCHER="HF_HUB_ENABLE_HF_TRANSFER=1 ACCELERATE_LOG_LEVEL=info TRANSFORMERS_VERBOSITY=info accelerate launch \ --config_file recipes/accelerate_configs/$ACCELERATOR.yaml \ --gradient_accumulation_steps $GRAD_ACC_STEPS \ --num_machines $NUM_NODES \ --num_processes $WORLD_SIZE \ --main_process_ip $MASTER_ADDR \ --main_process_port $MASTER_PORT \ --machine_rank \$SLURM_PROCID \ --rdzv_conf "rdzv_backend=c10d,rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT" \ --max_restarts 1 \ --role \$(hostname -s): \ --tee 3 \ " # force crashing on nccl issues like hanging broadcast export NCCL_ASYNC_ERROR_HANDLING=1 # export NCCL_DEBUG=INFO # export NCCL_DEBUG_SUBSYS=COLL # export NCCL_SOCKET_NTHREADS=1 # export NCCL_NSOCKS_PERTHREAD=1 # export CUDA_LAUNCH_BLOCKING=1 # Specific configuration optimized for the Hugging Face Compute Cluster # Be ye warned this may not work on other clusters! module load cuda/12.1 # srun error handling: # --wait=60: wait 60 sec after the first task terminates before terminating all remaining tasks # --kill-on-bad-exit=1: terminate a step if any task exits with a non-zero exit code SRUN_ARGS=" \ --wait=60 \ --kill-on-bad-exit=1 \ " clear; srun $SRUN_ARGS --jobid $SLURM_JOB_ID bash -c "$LAUNCHER --role \$SLURMD_NODENAME: $CMD" 2>&1 echo "END TIME: $(date)"
alignment-handbook/recipes/launch.slurm/0
{ "file_path": "alignment-handbook/recipes/launch.slurm", "repo_id": "alignment-handbook", "token_count": 1135 }
11
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
-