handbooks-deep-ocr / README.md
davanstrien's picture
davanstrien HF Staff
Upload README.md with huggingface_hub
37827fd verified
metadata
tags:
  - ocr
  - document-processing
  - deepseek
  - deepseek-ocr
  - markdown
  - uv-script
  - generated

Document OCR using DeepSeek-OCR

This dataset contains markdown-formatted OCR results from images in NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset using DeepSeek-OCR.

Processing Details

Configuration

  • Image Column: image
  • Output Column: markdown
  • Dataset Split: train
  • Batch Size: 512
  • Resolution Mode: large
  • Base Size: 1280
  • Image Size: 1280
  • Crop Mode: False
  • Max Model Length: 8,192 tokens
  • Max Output Tokens: 8,192
  • GPU Memory Utilization: 80.0%

Model Information

DeepSeek-OCR is a state-of-the-art document OCR model that excels at:

  • ๐Ÿ“ LaTeX equations - Mathematical formulas preserved in LaTeX format
  • ๐Ÿ“Š Tables - Extracted and formatted as HTML/markdown
  • ๐Ÿ“ Document structure - Headers, lists, and formatting maintained
  • ๐Ÿ–ผ๏ธ Image grounding - Spatial layout and bounding box information
  • ๐Ÿ” Complex layouts - Multi-column and hierarchical structures
  • ๐ŸŒ Multilingual - Supports multiple languages

Resolution Modes

  • Tiny (512ร—512): Fast processing, 64 vision tokens
  • Small (640ร—640): Balanced speed/quality, 100 vision tokens
  • Base (1024ร—1024): High quality, 256 vision tokens
  • Large (1280ร—1280): Maximum quality, 400 vision tokens
  • Gundam (dynamic): Adaptive multi-tile processing for large documents

Dataset Structure

The dataset contains all original columns plus:

  • markdown: The extracted text in markdown format with preserved structure
  • inference_info: JSON list tracking all OCR models applied to this dataset

Usage

from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="train")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")

Reproduction

This dataset was generated using the uv-scripts/ocr DeepSeek OCR vLLM script:

uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\
    NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \\
    <output-dataset> \\
    --resolution-mode large \\
    --image-column image

Performance

  • Processing Speed: ~0.6 images/second
  • Processing Method: Batch processing with vLLM (2-3x speedup over sequential)

Generated with ๐Ÿค– UV Scripts