Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
sequence
string
label
int64
psr_score
float64
b_cell_subset
string
source
string
ADI-38502
EVQLLESGGGLVKPGGSLRLSCAASGFIFSDYSMNWVRQAPGKGLEWVSSISSSSGYIYYADSVKGRFTISRDNAKNSLYLQMNSLRADDTAVYYCARRAYGSGTSPQYFDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-38501
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARERDYYGHLDVWGQGTTVTVSS
0
0.023184
IgG memory
shehata2019
ADI-47173
EVQLVESGGGVVQPGRSLRLSCAASGFTFDRYGMHWIRQAPGKGLECVALISFDGSHKYADSVKGRFTISRDNSRNTLYLQMDSLRAEDTAVYYCAKVGCISNSCHSNDIDYWGQGIQVTVSS
0
0
IgG memory
shehata2019
ADI-47054
EVQLVESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLDWIGSIYYSGSTKYNPSLKSRVTISVDTSKNQFSLNLSSVTAADTAVYYCARLPRNTTDDALDIWGQGTTVTVSS
0
0.011716
IgG memory
shehata2019
ADI-47278
QVQLVQSGAEVKKPGASVKVSCKASGYSFSSYGMHWVRQAPGQRLEWMGWIRAGSGDTKYSQKFQDRVTITRDKSANTAYMELSSLRSEDTAMYYCAREWEPLSGAGYWGQGTLVTVSS
0
0.010336
IgG memory
shehata2019
ADI-47055
QVQLVESGGGLVKPGGSLRVSCAASGFTFSDFSMNWVRQAPGKGPEWVSSISANSNHRYYADSVKGRFTISRENTKNSLYLQMNSLRAEDTAVYYCARGYYHVLTGYPREWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47174
QVQLQESGGGVVQPGRSLRLSCVASGFTFSSYGMHWVRQAPGKGLQCMAVISRDGSKQYYADSVKGRFTISRDNSKDTLYLEMNSLRSEDTAMYYCARDFGDGYNDIDYWGQGTLVTVSS
0
0.026382
IgG memory
shehata2019
ADI-47056
EVQLVESGGGLVQPGGSLRLSCAASGFSFKSYNMNWVRQAPGKGLEWISYISGSGSTIYYADSVKGRFTISRDNANNSLYLQMNSLRDEDTAVYYCAREGVAIFGKGNWLDPWGQGTLVTVSS
0
0.000664
IgG memory
shehata2019
ADI-47279
QVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQPPGKGLEWVANINQHGSEKSYVDSVKGRFTISRDNANNSLYLQMSSLRIEDTAVYYCARRRPDSGYYYWGQGALVTVSS
0
0.034229
IgG memory
shehata2019
ADI-47057
EVQLVESGGGVIRPGGSLRLSCAATGFTFDDYAMSWVRQAPGKGLEWVSGINWRGDSRYYADSVRGRFTISRDNAKNTLYLQMDSVTAEDMALYFCARENSGAYEGIGGYYGMDVWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47280
QVQLVQSGPGLVKPSETLSLTCTVSGASLSHSSYYWAWIRQPPGKGLEWIGNIFHSGNTYNNPSLKSRVNISVDPSKNQFSLKLNSVTAADTSVYFCARLGGSKWESYYFDYWGQGTLVTVSS
0
0.034814
IgG memory
shehata2019
ADI-47058
EVQLVESGGGLVQPGGSLRLSCAASGFRFDDYAIHWVRQAPGKGLEWVSLISRDGVNTFYADSVKGRFTISRDNSKNSLYLQMNSLRTKDTALYFCVRNFKGAALLDSWGQGTLVTVSS
0
0.021888
IgG memory
shehata2019
ADI-47281
QVQLVQSGAEAKKPGASVKVSCKASGYTFTTYGVHWVRLAPGQRLERMGWINAGNGATKYSQNFQGRITITTDTSASTAYMELSSLRSEDTAVYYCARGQLPHWNYFDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47175
QVQLVQSGGGVIRPGGSLRLSCAASGFIFDDYAMSWVRQVPGKGLQWVSGVNSRGRSTGYADSVKGRFTISRDNAKQSLYLEMNSLRVDDTAFYYCARDQNDYPSETYYGDSYFDSWGQGTLVTVSS
0
0.100308
IgG memory
shehata2019
ADI-47282
EVQLVESGGGVVQPGRSLRLSCTPSGFTFWRYTMQWVRQAPGKGLEWVAGIRYDGSRKYYPDSVKGRFTISRDNSKNTLDLQMNSLRADDSAVYYCARDSMGRDDFGGGFDLWGQGTMVTVSS
0
0.100122
IgG memory
shehata2019
ADI-47283
QVQLVQSGTEVKKPGASVKVSCKASGYTFGTYNINWLRQATGQGPEWMGWMNPKSGNTGYAPKFRGRVTLTRNTSITTAFMELSSLRSDDTAIYYCSRGTLVGGACHSCWFDAWGQGTLVTVSS
0
0.144471
IgG memory
shehata2019
ADI-47059
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMTWVRQAPGKGLEWVSYISGSSSSMHYADSVKGRFTISRDNAESSLYLQMSSLRAEDTAVYYCARQYYSGGSALFSGWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47060
EVQLVESGGGLVQPGGSLRLSCTTSGITFSRYAMTWVRQSATKGLEWISSIGSGSTFYADSVKGRFTISRDNSKDTLYLQMNNLRAEDTALYYCGRDPNGDYVGAFDLWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47178
EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGRGLEWVSALHTGGNTNFADSVKGRFTISRDNSRNTLYLQMNSLSAEDTAVYFCARAPSVRSRANWYFDLWGHGTLVTVSS
0
0.004307
IgG memory
shehata2019
ADI-47177
EVQLVESGGGVVQPGRSLRLSCAVSGFTLSTYTLHWIRQAPGQGLEWVSLISYDGSIEHYADSVKGRFTISRDNSKNTVFLQMDSLRSDDTAVYYCARDRARMCRSLYCHGYFDNWGQGTLVTVSS
0
0.03024
IgG memory
shehata2019
ADI-47284
EVQLLESGGDLVRPGGSLRLSCAASGFSFGSYWMGWVRQAPGKRLEWVANIKQDGSQKSYVDSVKGRFTISRDNAKSLLYLQMTSLRGEDTAVYFCARGQTTQEYWGQGTLVTVSS
0
0.02952
IgG memory
shehata2019
ADI-47179
EVQLLESGGGVVQPGGSLRLSCEASGFIFSDYAMHWVRQVPGKGLEWLAIILLDGSNEVYSDSVKGRFIISRDNSNNTLYLHMNNLKVEDTAFYYCARPQNPKRNINAFNVWGQGTMVTVSS
0
0
IgG memory
shehata2019
ADI-47180
EVQLVESGGIVVQPGGSLRLSCAASGFTFHEYTMHWVRQAPGKGLEWVSLITWDGGSAFYADSVKGRFTISRDNGKNSLYLQMNSLRTEDTALYYCAKERSRVFHGWGLGTLVTVSS
0
0
IgG memory
shehata2019
ADI-45439
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYPISWVRQAPGQGLEWMGGITPKFDIANHAQKFQGRVTITADKSTSTAYMKLTNLRSEDTAVYYCARHNDITEKEAFDIWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-45368
QITLKESGPALVKPTQTLTLTCTFSGFSLSTSGMCVSWIRQPPGKALEWLARIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARIRPAGGDYYFDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47062
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYWLNWVRQAPGEGLEWVANIKPDGSETYYVDSVKGRFTISRDNAKKSLYLQMNSLRAEDTAVYYCASASVYYGVPADVWGQGTTVTVSS
0
0.001941
IgG memory
shehata2019
ADI-47182
EVQLVESGGGLVQPGGSLRLSCVGSGFNFGIYSMNWVRQAPGKGPEWASYISTASTTIQYADSVKGRFTVSRDNAKNSLYLQMNSLKAEDTAVYYCARGIEANWNRPDHYYGMDVWGQGTTVTVSS
0
0.001603
IgG memory
shehata2019
ADI-47063
QVTLKESGGGLVKPGGSLRLSCAASGFTFSDAWMSWVRQAPGKGLEWVGLIKNKPQGETTDYAAPVKGRVSISRDDSQNTLYLHMNSLQTEDTAVYYCTTDSTPSIRFWSHYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47183
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRLAPGKGLEWLSSISRSSNNIYYADSVMGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSYSSGSCDYWGQGTLVTVSS
0
0.130208
IgG memory
shehata2019
ADI-47064
EVQLVESGGGLVKPGGSLRVSCVVSGFPFSNAWLNWVRQAPGKGLEWVGRITTVDSGETTDYAAPVKGRFTISRDDSKSTVYLQMNSLRTEDTAVYYCATEVDKVATVDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47066
EVQLLESGGGLVQPGESLRLSCSGSGFTFSTYGFHWVRQAPGKRLEYVSGIGNDGDSIYYKEAVRGRFTISRDNSKNTLYLQMTSLRPEDTAVYYCVKDREDNYGTHPLDIWGHGTTVTVSS
0
0
IgG memory
shehata2019
ADI-45379
EVQLLESGGGLVQPGGSLRLSCAVSGFPFSSYWMSWVRQAPGKGLEWVANIKEDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCATDPDVGLSDSWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47067
EVQLVESGGAVVQPGKSLRLSCAASGFMFTSYTLHWVRQAPGKGPEWVAVTSSNGRNQYYADSVKGRFVVSRDNSNNTLYLQLNSLTVEDTAVYYCAREGFYRGPDLGDDAFDVWGQGTMVTVSS
0
0.00232
IgG memory
shehata2019
ADI-47068
EVQLLESGGGLEQPGGSLRLSCAASGFSFSSYDMNWVRQAPGKGLEWVSHISSSSSNIYYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAAVIAARPWYFDLWGRGTLVTVSS
0
0.00826
IgG memory
shehata2019
ADI-47069
QVQLVQSGAEVKKPGASVKVSCQASGYTFRTYAMHWVRQAPGQGLEWMGLIDGGSGKTQYSQKFQGRVTLSRDTSASTAYMDLRSLRSEDTAVYYCAKEYISSSSKYYYYMDVWGKGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47070
EVQLLESGGGLVKPGGSLRLSCEVSEFSLKIAWMNWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVKGRFIISTDDSESTVFLQMDSLKTEDTAVYYCATDILGHCTGNTCSYFDIWGHGKMVTVSS
0
0.006229
IgG memory
shehata2019
ADI-45442
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYPMNWVRQAPGKGPEWVSALGSSGASTFYADSVKGRFTISRDNSKNTLYLQMSSLRAEDTALYYCAKNQLQLGRGAFFDYWGQGILVTVSS
0
0
IgG memory
shehata2019
ADI-47184
EVQLVESGAEVKKPGASVKVSCKASGHTFSDHYIHWVRQAPGQGLEWMGWINPNSGGTKYAQKLQGRVSMTRDTSSTTVYMELSRLTSDDTAVYYCARDIVYNYISSLAFDIWGQGTMVTVSS
0
0
IgG memory
shehata2019
ADI-47073
QVQLVQSGAEVKKPGASVKISCKASGYTFTSFYMHWVRQAPGQGLEWMGVINPSGTATTYAQKFQGKFTMTRDTSTSTLYMELSSLRSEDTAVYYCSRESGGLKHWDYWGQGTLVTVSS
0
0.013344
IgG memory
shehata2019
ADI-46682
EVQLLESGGGLVQPGGSLRLSCATSGFSFSGFWMHWVRQAPGKGLMWVSRINNDGSDTIYADSVKGRFTISRDNAKNTLYLQMSSLRVEDTAVYYCARGLRGPDFWGLGTMVTVSS
0
0
IgG memory
shehata2019
ADI-47074
EVQLLESGPGLVKPSQTLSLTCTVSGGSISSGSYYWNWIRQPAGKGLEWIGRIYTTGGTKYNPSLKSRVTISVDTSKNQFSLKLNSVTAADTAAYYCARDPSYSTDSYSGVSDAFDIWGQGTMVTVSS
0
0
IgG memory
shehata2019
ADI-47186
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNFAMSWVRQAPGKGLEWVSAISGTGGSTYYADSVKGRLTISRDNSKNTLYLQMNSLRAEDTAIYYCAKDRRSGNYGMGFFDSWGQGTLVTVSS
0
0.039962
IgG memory
shehata2019
ADI-45370
EVQLLESGGGLVKPGGSLRLSCAASGFAFSAYGMVWVRRATGKGLEWVSSIPGNSAYSHSADSVKGRFTISRDNDKNLLFLQMNSLTVDDTAVYYCARLAEPHFLDFWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47077
QVQLVQSGGGLVQPGGSLRLSCAASGFIYTNYAMTWVRQAPGKGLEWVASLSGSGGSTYYADSVNGRFTISRDNSNNTLYVQMNSLRAEDTAVYYCAKERDFGVPGGLIDHWGQGTLVTVSS
0
0.008179
IgG memory
shehata2019
ADI-47079
EVQLVESGGGVVQPGRSLRLSCAASGFTFRSYAMTWVRQAPGKGLECVALISYDGTNTNYADSVKGRFTVSRDNSKNTLYLQMNSLTTEDTAVYYCATTTTNDWYGGPDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47289
QVQLVQSGGGLVQPGGSLRLSCAASGFISSSYWMSWVRQAPGKGLEWVANIKPDGSEIYYVDSVKGRFTISRDNAKNSLSLQMSSLRADDTAVYYCVRDGRSRWHFDYWGQGALVTVSS
0
0
IgG memory
shehata2019
ADI-47191
EVQLQESGGGLVQPGGSLRLSCAASGFAFSNYWMHWVRQTPGKELLWVARINSDGSDTTYADSVKGRFTISRDNAKNTLYLQMNTLRAEDTAVYYCARTHCSGGNCFSLIAHWGQGTLVTVSS
0
0.030764
IgG memory
shehata2019
ADI-47192
QVQLVQSGAEVREPGASVKVSCKASGYTFTNYFIHWVRQAPGQGLEWLGIIRIRDGHTNYAQKFQGRITMTRDTSTNTVYMELSTLASADTAVYYCARPISHCVGNNCYVEDFYDMGVWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47290
QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYYMHWVRQAPGQGLEWMGLINPSGGSTSYAQKLQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARGRKVVVLPTAPSHDWGQGTLVTVSS
0
0.010188
IgG memory
shehata2019
ADI-47195
EVQLVESGGGLVQPGRSLRLSCTGSGFIFGDYAMTWVRQAPGKGLEWVGFIRSKTYGGTTQYAASVKGRFTVSRDDSNSIVYLQMNSLKTEDTAFYYCAGGTGRTYLDYWGQGTLVTVSS
0
0.007915
IgG memory
shehata2019
ADI-47196
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDFVTCSSTSCYRGFMGWWGQGTLVTVSS
0
0.033892
IgG memory
shehata2019
ADI-47083
EVQLLESGPGLVKPSETLSLTCTVSGDSINRSPYFWAWIRQPPGKGLEWIGSAYYSGSTYDNPSLKSRVTISVDTSKNQFSLNVRSVTAADTAVYYCARSNRDRRGYARFDNWGQGTLVTVSS
0
0.044195
IgG memory
shehata2019
ADI-47198
QVQLVESGGGLVQPGGSLRLSCTASGFTFGNYGMSWVRQAPGKGLEWVSSISNSGGDTYYADSVRGQFTISRDNSKNTLYLQMNSLRAEDTAKYYCVKGHLVGGNTHYFEYWGQGTLVTVSS
0
0.009544
IgG memory
shehata2019
ADI-47199
EVQLVETGPGLVKPSETLSLNCTVFGNSISSYYWSWIRQSPGKGLEWIGNIFHDGTTNYNPSLKSRVTMSLDTSNNQFSLKLSSVTAADTAVYYCARTGRLGEFSVRLDFWGQGALVTVSS
0
0.111019
IgG memory
shehata2019
ADI-47201
EVQLLESGGGLVKPGGSLRLSCAASGFAFSAYGMVWVRRATGKGLEWVSSIPGNSAYSHSADSVKGRFTISRDNDKNLLFLQMNSLTVDDTAVYYCARLVEPHFLDFWGQGTMVTVSS
0
0
IgG memory
shehata2019
ADI-45447
EVQLVESGAEVKEPGESLRISCKGSGYSFTDYWISWVRQMPGKGLEWMGRIDPTDSYTSYSPSFEGHVTISTDKSISTAYLQWRSLKAPDTAMYYCARHSGSYPLTYFDYWGRGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47293
QVQLVQSGAEVKKPGASMKVSCKASGYTFTGFYIQWVRQAPGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSINTAHMELKRLTSDDTAVYYCARGGVLFGGILILDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-45378
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGYHSSSWPDVPLGYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47204
EVQLLESGGGVVQPGRSLRLSCVVSGFMFSGYGMHWVRRAPGKGLEWVAATSRDGSTQYYADSGKGRFTISRDSSQNTLYLQMNSLRGDDTAVYYCAKVGWSGPQPYYVYAMDVWGQGTTVTVSS
0
0.005129
IgG memory
shehata2019
ADI-47093
EVQLVESGGGLAEPGGSLRLSCAASGFPFHGYSMYWVRQAPGKGLEWVSFIREYSTATYYADSVKGRFTISRDDAENALFLEMNNLRAEDTAVYYCARDLNRAYLDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47297
EVQLVETGPGLVRPSETLSLTCAVSGDSTGTYYWSWIRQSPGKGLEFIGYVFHDASTNYNPSLKSRVTISIDTSKKHFSLKVKSVTAADTAVYFCARFQAFGSSFDSWGQGILVTVSS
0
0.106343
IgG memory
shehata2019
ADI-45440
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAPGKGLEWVSASNADKTYYTGSVKGRFTISRDYSKNTLYLEMNSLRVEDTAVYYCAKEFGGSGWYSIDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47209
QVQLVQSGPALVKPTQTLTLTCTFSGFSLSTSGMCVSWIRQPPGKALEWLALIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARTPVAVAGRHFDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-46678
QVQLVQSGGGVVQPGRSLRLSCAASGFTFNTYAMHWVRQAPGKGLEWVALISYDGANKYYADSVKGRFTISRDNSKNTLYLQINSLRAEDTAVYYCASGGLVVTTPLDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47099
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWVRQPPGKALEWLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDAATYYCVHRPESYYHYGMDVWGRGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47300
QVQLVESGPGLVKPSETLSLTCTVSGGSISTYHWSWIRQPPGKGLEWIGYIYYTGSTNYNPSLKSRVTMSVDTSKNQFSLRLNSVTQADTAVYYCARLPDKLRFSLDRRPRTSIWGQGTTVTVSS
0
0.237031
IgG memory
shehata2019
ADI-47100
QVQLVQSGAEVKRPGASVKVSCKASGYTFIGYYIHWVRQAPGQGLEWMGWMNPNGGGTNYAHKFQARVTMTRDTSISTASMELSNLRSDDTAVYYCAKERGESIAGEGELEYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47215
EVQLVESGGGLVKPGESLRLSCAASGFTFTNAWMNWVRQAPGKGLEWVGRIKSKTHGGTTDYAAPVKGRFTISRDDSKNTVYLQMNSLKTEDTAVYYCTTGLFPWGDFFNYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47216
EVQLVESGPGLVKLSETLSLTCTASGGSISSSSHYWTWIRQSPGKGLEWIGSIYYRGSTYYNPSLKSRVTMSVDTSKNQFSLRLSSVTAADTAVFYCARYGLELHSSYYAMDVWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47217
EVQLLESGPGLVKPSQTLSLTCTVSGGSISSGSYYWNWIRQPAGRGLEWIGRIYTTGNTDYNPSLKSRVTISVDTSKKQFSLQLSSVTAADTAVYYCARRGGDYGRPFDIWGQGTTVTVSS
0
0.038685
IgG memory
shehata2019
ADI-46710
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGSKRLGAPYYYGMDVWGQGTTVTVSS
0
0.003373
IgG memory
shehata2019
ADI-47301
QVQLVESGGGLVQPGGSLRLSCAASGFTFSRYTMHWVRQAPGKGLEYVSAITSNGGSTYYANSVKGRFIISRDNSKNTLYLQMGGLRGEDMAVYYCARGVGAARTFDYWGQGTLVTVSS
0
0.276257
IgG memory
shehata2019
ADI-47187
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPDSGNTGYAQKFQGRVTMASNTSIRTAYMELSSLRSEDTAVYYCARRGYCSGGSCPHLTGDHENWFDPWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47105
EVQLVESGGGLVKPGGSLRLSCAASGFGFSDYYMTWIRQAPGKGLEWVSYISDAYTSYADSVQGRFTISRDNAKNSLYLQMSSLRAEDTAVYYCARVTLMGYYFDSWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47106
EVQLVESGGGLMQPGGSLRLSCAASGITSSFYAMSWVRQAPGKGLEWLSAISSTGVRTYYVDAVKGRFTTSRDNSKNTLSLQMNSLRVEDTAVYYCAISPSCGRDCDAFIGHFDYWGQGTTVTVSS
0
0.007693
IgG memory
shehata2019
ADI-45490
QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCASRRPYGGKRVMGAFDIWGQGTMVTVSS
0
0.071951
IgG memory
shehata2019
ADI-47302
QVTLKESGPTLVKPTQTLTLTCTLSGFSLSTSGVGVGWIRQPPGKAPEWLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNLDPVDTATYYCARLYGSGSYYKRIWFDSWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47109
EVQLVESGGGLVKPGGSLRLSCETSGFIFSAHNMCWVRQAPGKGLEWISSINSFSTFIYYADSVKGRFTISRDNAKNSLYLQMDSLTAEDTAVYYCARESSGTRNWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47304
QVQLVQSGAEVKKPGASVKVSCKASGYSFTIYPMHWVRQAPGQRLEWMGWINAGNGNTKYSQKLQDRVTITRDTYASTVYMELRSLRSEDTAVYYCARVGLSTAIQFWGQGTLVTVSS
0
0.039559
IgG memory
shehata2019
ADI-47112
QVQLVQSGGGVVQPGRSLRLSCAVSGFTFSSYGMHWVRQAPGKGLEWVALIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPRNFLGGEDDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-47113
EVQLLESGGGVVQPGSSLRLSCAASGFTFSYYALHWVRQAPGKGLEWVGIISDDGTRKYYGDSVKGRFTMSRDIAKNTLFLEMNDLGSEDTAMYYCARAYTNAWYAGYWGQGIQVTVSS
0
0
IgG memory
shehata2019
ADI-47224
QVQLVESGGGLVQPGGSLRLSCAPSGFTFASNAVSWVRQAPGKGLEWVSGISGGRPYYADSVKGRFTISRDNSKNTVYLQMSSLRAEDTAVYYCAKDPGSWIAYLAAFDIWGQGTMVTVSS
0
0
IgG memory
shehata2019
ADI-47225
QVQLVQSGPGLVKPSDTLSLTCAVSNYSINNSNWWGWIRQPPGKGLEWIGYIFHSGSTHYNPSFKSRVIMSVDTSKNQFSLKLSSVTAVDTAVYYCAGKSQWPWDGFDMWGQGTMVTVSS
0
0.02489
IgG memory
shehata2019
ADI-45429
EVQLVESGGGLVQPGGSLRLSCAASGVTFSNYAMHWVRQAPGKGLEYVSGISSNGGTTYYVNSVKGRFTISRDNSKNTLYLQMGSLTTEDTAVYFCARDGRGYSGTYALIPFDYWGQGTLVTVSS
0
0.119682
IgG memory
shehata2019
ADI-47119
EVQLVESGGGLLQPGESLRLSCAPSRFALSSNAMGWVRQAPGKGLEWVSGINGAGSTYYADAVKGRFTISRDNSKNLVYLQVTSLRAEDTAVYYCVQEGPAVTSLPYTFYALDVWGQGTTVTVSS
0
0.010904
IgG memory
shehata2019
ADI-47308
QVQLVQSGAEVKKPGESLKISCKGSGYSFTSSWIAWVRQMPGKGLELMGIIYPSDSDTRYSPSFQGQVTISADKSISSAYLQWSSLKASDTAMYFCASQQSGSIVARAGYYGMDVWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47121
EVQLLESGGGVVQPGRSLRLSCAASGFIFSQFDMHWVRQAPGKGLEWVALVSPYGSRQHHADSVKGRFTISRDNPKNTLFLEMNSLRAEDTAVYYCAKGGGFGGLDVWGQGTTVTVSS
0
0.074491
IgG memory
shehata2019
ADI-47122
EVQLVESGGALVQPGRSLRLSCTASGFMFDDYAISWVRQAPGKGLEWVGFIRGKAYGGTTEYAASVKDRFSISRDDSKKIAYLEMNSLKSEDTGVYYCAPLDWDQIHYGMDVWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47311
QVQLVQSGGGLIQPGGSLRLSCAASGFTISSRYMNWVRQAPGKGLEWLSLTYNGGNTRYADSVKGRFTVSRDTSKNTLYLQLNSLRAGDTAVYYCARDTHGYSFAQWGQGTLVTVSS
0
0.159794
IgG memory
shehata2019
ADI-47123
QVQLQQWGAGLLKPSETLSLTCAVSGGSLNNYYWTWIRQPPGKGLEWIGEINHSGITNYNPSLKSRVTISMDTSSTQFSLMMSSLTAADTAVYYCARALRGGLDILNWVDPWGQGTLVTVSS
0
0.005969
IgG memory
shehata2019
ADI-47231
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYFMGWIRQAPGKGLEWVSHITRGSSSYTSYAASVRGRFTVSRDYAKNSLDLQMNNLRAEDTAVYYCVRGGAYYDLPLDVWGQGTTVTVSS
0
0.007631
IgG memory
shehata2019
ADI-47232
EVQLVESGGGLVQPGGSLRLSCSASGFIFSNHNMNWVRLAPGKGLEWVSHISSSGSTMYYADSVKGRFTIARDNAKNSLYLQMNSLRAEDTAVYYCARVYQDVLDFLDGPKKPGSHYYYGLGVWGQGTLVTVSS
0
0.002606
IgG memory
shehata2019
ADI-47258
EVQLVESGAEVKKPGSSVKVSCRASGGSFNSHAISWVRQAPGQGLEWMGRIIPILDITNYAQRFQGRVTFTADKSTTTAYMELSSLTSDDTAVYYCAREQQAAAGANYYYYGMDVWGQGTTVTVSS
0
0.309316
IgG memory
shehata2019
ADI-46677
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDERWAHFDYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-45491
QVQLQQWGAGLLKPSETLSLTCGVNGGSFSGYYWSWIRQPPGKGLEWIGEINHGGGTTYNPSLKSRVTISVATSKNQFSLRLNSVTAADTAVYYCVRGRGFSSGPCLRHWGQGTLVTVSS
0
0.137646
IgG memory
shehata2019
ADI-47313
QVQLVQSGPGVVKPSQTLSLTCTVSGGSISSNYYHWNWIRQPPGKGLEWLGFIDDSVTMYYNPSLKSRLIMSMDTSKNQFSLNVSSLTAADTAVYYCATGLRGSGGLGYWGQGTLVTVSS
0
0
IgG memory
shehata2019
ADI-45373
QVQLVQSGGGVVQPGRSLRISCVASGFTFNIYGMHWVRQPPGKGLEWVAVISYDGNQQYSTDSVQGRFIISRDDSKNTLYLQMNSLRGEDTAVYYCAKAAGSGFSYNGLDVWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47132
QVQLVQSGAEVKKPGASVRVSCLASGYSLIDYYIHWVRQAPGQGLEWMGWINPALGTTKYEQKFQGRVTMTRDTTINTVYMQMSGLTSDDTAVYFCARWNFEGFDSWGQGTLVTVSS
0
0.076218
IgG memory
shehata2019
ADI-47237
EVQLVESGPGLVKPSETLSLTCTVFGHSISSDYYWGWIRQPPGKGLEWIGSIYHGGSTYYNPSLKSRVTMSVDTSKNQFSLKLSSVAAADTAVYYCARETGTGFPIPAPGRAFDIWGQGTTVTVSS
0
0
IgG memory
shehata2019
ADI-47238
QVQLVQSGGGLVQPGGSLTLSCAASGFTFSSYAITWVRQAPGKGLEWVSSIIASGGSTFYTDSVKGRFTISRDNSKNTVYMQMNSLRAEDTAVYYCAKRGYCSTASCQRPYGQFDYWGQGTLVTVSS
0
0.089029
IgG memory
shehata2019
End of preview. Expand in Data Studio

Shehata Antibody PSR Dataset (Novo Nordisk Preprocessing)

Dataset Summary

This dataset contains 398 human antibody heavy chain variable domain (VH) sequences with PSR (Poly-Specificity Reagent) measurements, preprocessed according to the methodology described in Sakhnini et al. 2025 (Novo Nordisk & University of Cambridge). The dataset was originally published by Shehata et al. 2019 and contains human B cell-derived antibodies studying the relationship between affinity maturation and antibody specificity.

This is the preprocessed version used as a test set for evaluating cross-assay transfer learning (ELISA-trained model → PSR test data).

Key Features

  • Organism: Human (Homo sapiens)
  • Molecule Type: Antibody heavy chain variable domain (VH)
  • Source: Human B cells from healthy donors (IgG memory, IgM memory, Naïve, LLPCs)
  • Assay: PSR (Poly-Specificity Reagent) flow cytometry (CHO cell membrane/cytosolic proteins)
  • Labels: Binary classification (0 = low PSR, 1 = high PSR)
  • Annotation: ANARCI with IMGT numbering scheme
  • Balance: Highly imbalanced (98.2% low PSR, 1.8% high PSR)

Important Note: Class Imbalance

This dataset is highly imbalanced with only 7 high-PSR sequences out of 398 total. This reflects the biological reality that most antibodies in the study were specific (low PSR). Consider this when evaluating model performance.

Supported Tasks and Leaderboards

  • Binary Classification: Predicting antibody PSR from sequence
  • Cross-Assay Transfer Learning: Testing ELISA-trained models on PSR data
  • Benchmark: Sakhnini et al. 2025 Fig. S14C (58.8% accuracy)

Languages

Protein sequences (amino acid alphabet)

Dataset Structure

Data Instances

{
  "id": "ADI-38502",
  "sequence": "EVQLLESGGGLVKPGGSLRLSCAASGFIFSDYSMNWVRQAPGKGLEWVSSISSSSGYIYYADSVKGRFTISRDNAKNSLYLQMNSLRADDTAVYYCARRAYGSGTSPQYFDYWGQGTLVTVSS",
  "label": 0,
  "psr_score": 0.0,
  "b_cell_subset": "IgG memory",
  "source": "shehata2019"
}

Data Fields

Field Type Description
id string Antibody identifier (ADI-XXXXX format from Adimab)
sequence string Antibody VH amino acid sequence (gap-free; ANARCI/IMGT-validated)
label int Binary label: 0 = low PSR, 1 = high PSR
psr_score float Continuous PSR score from flow cytometry
b_cell_subset string B cell subset origin (IgG memory, IgM memory, Naïve, LLPCs)
source string Data source identifier (shehata2019)

Data Splits

Split Examples Label 0 (Low PSR) Label 1 (High PSR)
test 398 391 (98.2%) 7 (1.8%)

Note: This dataset is used exclusively as a test set for cross-assay validation. The entire dataset is the "test" split.

Dataset Creation

Curation Rationale

This dataset was created to study the relationship between antibody affinity maturation and specificity. It enables evaluation of whether models trained on ELISA polyreactivity data can transfer to PSR-based measurements of non-specificity.

Source Data

Original Data Collection

From Shehata et al. 2019:

  • Source: Human B cells from healthy donors (LLPCs from bone marrow; naïve and memory B cells from peripheral blood)
  • Subsets: IgG memory, IgM memory, Naïve, LLPCs (long-lived plasma cells)
  • Assay: PSR (Poly-Specificity Reagent) flow cytometry
  • Study Focus: How affinity maturation affects antibody specificity

Key Finding from Original Paper:

"Affinity maturation enhances antibody specificity but compromises conformational stability"

Preprocessing Pipeline (Novo Nordisk Methodology)

Stage Description Sequences
1. Excel Extraction Extract from shehata-mmc2.xlsx Supplementary Table S1 402
2. Drop Non-sequence Rows Drop legend/metadata rows without VH/VL sequences 402 → 400
3. Drop Missing PSR Drop antibodies without numeric PSR scores 400 → 398
4. ANARCI Annotation Annotate using ANARCI with IMGT numbering 398 → 398 (100%)
5. Gap Removal Use sequence_aa not sequence_alignment_aa (no change)

100% Success Rate: All 398 sequences were successfully annotated by ANARCI.

Novo Nordisk Methodology Verification

This dataset's preprocessing was cross-referenced against Sakhnini et al. (2025) Section 4.1:

Metric Novo Paper (Section 4.1) This Dataset Status
Dataset Size "398 antibodies" 398 sequences ✅ EXACT MATCH
Non-specific Count "7 out of 398 antibodies characterised as non-specific only" 7 (1.8%) ✅ EXACT MATCH
Annotation Method "ANARCI following the IMGT numbering scheme" ANARCI/IMGT ✅ MATCH
Source Shehata et al. 2019 Cell Reports Supplementary Table S1 ✅ MATCH

Verification Notes:

  • The exact counts (398 total, 7 non-specific) match the Novo paper precisely
  • Labels are derived from PSR scores using the same threshold methodology
  • No additional filtering was applied beyond ANARCI annotation

Binary Label Assignment

PSR scores were converted to binary labels following Shehata et al. (2019) high-polyreactivity threshold:

  • Low/no PSR (label=0): psr_score ≤ 0.33 → 391 antibodies (98.2%)
  • High PSR (label=1): psr_score > 0.33 → 7 antibodies (1.8%)

For parity with Sakhnini et al. (2025), the conversion script computes a cutoff at the top 7/398 antibodies (98.24th percentile); in this dataset that is equivalent to psr_score > 0.33.

Annotations

Annotation Process

  1. Excel Parsing: Extract VH sequences and PSR scores from Supplementary Table S1
  2. ANARCI Annotation: IMGT numbering scheme applied to identify VH domain boundaries
  3. Gap Character Handling: Use sequence_aa (gap-free) for ESM compatibility
  4. Label Binarization: PSR scores converted to binary (low/high)

Special Attribution

From the original paper acknowledgments:

Tingwan Sun and Yingda Xu from Adimab, LLC contributed to the PSR measurements in this study.

Who are the annotators?

  • Original PSR Assays: Shehata et al. 2019 (Laura Walker Lab, Adimab collaborators)
  • Preprocessing pipeline: Based on Sakhnini et al. 2025 (Novo Nordisk & University of Cambridge)
  • This preprocessing: The-Obstacle-Is-The-Way (Hugging Science)

Personal and Sensitive Information

This dataset contains human-derived antibody sequences. However, these are B cell receptor sequences from healthy donor samples, which do not constitute personally identifiable information. The original study was conducted with appropriate ethical oversight.

Considerations for Using the Data

Social Impact of Dataset

This dataset enables:

  • Understanding the specificity-stability tradeoff in antibody engineering
  • Cross-assay validation of polyreactivity prediction models
  • Development of tools to identify potentially non-specific antibodies early in drug development

Discussion of Biases

  1. Severe Class Imbalance: Only 1.8% (7/398) are high-PSR - consider appropriate metrics (F1, ROC-AUC)
  2. Human-Specific: All sequences are human-derived; may not generalize to other species
  3. Assay Bias: PSR assay measures different aspects of non-specificity than ELISA
  4. Selection Bias: Antibodies were selected for affinity maturation studies, not random sampling
  5. B Cell Subset Distribution: Enriched for memory B cells

Other Known Limitations

  1. VH Only: This dataset contains only heavy chain sequences; light chain (VL) is available separately
  2. Small Size: 398 sequences limits statistical power
  3. Extreme Imbalance: Standard accuracy metrics may be misleading

Recommended Usage

When evaluating models trained on ELISA data (Boughter):

# For reproducing Sakhnini et al. (2025) Fig. S14C, binarize model probabilities with:
THRESHOLD = 0.5495  # decision threshold on predicted P(non-specific)
predictions = (model_probabilities >= THRESHOLD).astype(int)

# Use appropriate metrics for imbalanced data
from sklearn.metrics import f1_score, roc_auc_score, balanced_accuracy_score

Note on Inference Threshold (0.5495)

IMPORTANT: The 0.5495 threshold is for model inference/evaluation only, NOT preprocessing.

  • What it is: A decision threshold for binarizing model prediction probabilities during evaluation
  • What it is NOT: A preprocessing parameter - the data (sequences, labels) is unaffected
  • Why it exists: Empirically determined to better reproduce Sakhnini et al. (2025) Fig. S14C results when evaluating ELISA-trained models on PSR test data
  • Not in the paper: This threshold value is not described in Sakhnini et al. (2025); it is derived via threshold sweep in this repository for parity against reported results
  • Standard threshold: 0.5 (binary classification default)
  • PSR-calibrated threshold: 0.5495 (determined via threshold sweep to match Novo's reported accuracy)

This threshold adjustment compensates for the cross-assay domain shift between ELISA (training) and PSR (testing) data.

Recommended Metrics

Due to severe class imbalance, prioritize these metrics over accuracy:

  • ROC-AUC: Area under the ROC curve (not affected by threshold or imbalance)
  • Balanced Accuracy: Average of sensitivity and specificity
  • F1 Score: Harmonic mean of precision and recall

Additional Information

Dataset Curators

  • Original Dataset: Laila Shehata, Laura M. Walker (Scripps Research, Adimab)
  • PSR Measurements: Tingwan Sun, Yingda Xu (Adimab, LLC)
  • Preprocessing Methodology: Laila I. Sakhnini, Daniele Granata et al. (Novo Nordisk)
  • This Preprocessing: The-Obstacle-Is-The-Way (Hugging Science)

Licensing Information

Shehata et al. (2019) is published under CC-BY-4.0 (per the DOI landing page). The raw source files in this repository are the Cell Reports supplementary spreadsheets; please retain upstream attribution/citations.

Citation Information

If you use this dataset, please cite the original paper, the Novo Nordisk methodology paper, and ANARCI (used for IMGT numbering):

@article{shehata2019affinity,
  title={Affinity maturation enhances antibody specificity but compromises conformational stability},
  author={Shehata, Laila and Maurer, Daniel P and Wec, Anna Z and Lilov, Asparouh and Champney, Elizabeth and Sun, Tingwan and Archambault, Kimberly and Burnina, Irina and Lynaugh, Heather and Zhi, Xiaoyong and Xu, Yingda and Walker, Laura M},
  journal={Cell Reports},
  volume={28},
  number={13},
  pages={3300--3308},
  year={2019},
  publisher={Elsevier},
  doi={10.1016/j.celrep.2019.08.056}
}

@article{sakhnini2025prediction,
  title={Prediction of Antibody Non-Specificity using Protein Language Models and Biophysical Parameters},
  author={Sakhnini, Laila I. and Beltrame, Ludovica and Fulle, Simone and Sormanni, Pietro and Henriksen, Anette and Lorenzen, Nikolai and Vendruscolo, Michele and Granata, Daniele},
  journal={bioRxiv},
  year={2025},
  month={May},
  publisher={Cold Spring Harbor Laboratory},
  doi={10.1101/2025.04.28.650927},
  url={https://www.biorxiv.org/content/10.1101/2025.04.28.650927v1}
}

@article{dunbar2016anarci,
  title={ANARCI: antigen receptor numbering and receptor classification},
  author={Dunbar, James and Deane, Charlotte M},
  journal={Bioinformatics},
  volume={32},
  number={2},
  pages={298--300},
  year={2016},
  doi={10.1093/bioinformatics/btv552}
}

Acknowledgments

We are grateful to:

  • Adimab, LLC (Tingwan Sun, Yingda Xu) for contributing the PSR measurements
  • Laura Walker Lab (Scripps Research) for publishing this valuable dataset
  • Novo Nordisk for publishing their preprocessing methodology

Contributions

Thanks to the Shehata/Walker lab and Adimab for making the original data publicly available, and to Novo Nordisk for publishing their preprocessing methodology.


Version: 1.0.0 Last Updated: 2025-12-14 Maintainer: Hugging Science Organization

Downloads last month
46