|
|
|
|
|
import os.path as osp |
|
|
import json |
|
|
from typing import List, Union |
|
|
import random |
|
|
|
|
|
import yaml |
|
|
from einops import rearrange, reduce |
|
|
import torch |
|
|
import torchvision.transforms.functional as tv_functional |
|
|
import gzip |
|
|
import numpy as np |
|
|
import cv2 |
|
|
from PIL import Image |
|
|
from torchvision.transforms.functional import pil_to_tensor |
|
|
|
|
|
|
|
|
class Colors: |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
|
|
|
|
|
|
hexs = [ |
|
|
'#4363d8', |
|
|
'#9A6324', |
|
|
'#808000', |
|
|
'#469990', |
|
|
'#000075', |
|
|
'#e6194B', |
|
|
'#f58231', |
|
|
'#ffe119', |
|
|
'#bfef45', |
|
|
'#3cb44b', |
|
|
'#42d4f4', |
|
|
'#800000', |
|
|
'#911eb4', |
|
|
'#f032e6', |
|
|
'#fabed4', |
|
|
'#ffd8b1', |
|
|
'#fffac8', |
|
|
'#aaffc3', |
|
|
'#dcbeff', |
|
|
'#a9a9a9', |
|
|
'#006400', |
|
|
'#4169E1', |
|
|
'#8B4513', |
|
|
'#FA8072', |
|
|
'#87CEEB', |
|
|
'#FFD700', |
|
|
'#ffffff', |
|
|
'#000000', |
|
|
] |
|
|
self.palette = [self.hex2rgb(f'#{c}') if not c.startswith('#') else self.hex2rgb(c) for c in hexs] |
|
|
self.n = len(self.palette) |
|
|
|
|
|
def __call__(self, i, bgr=False): |
|
|
c = self.palette[int(i) % self.n] |
|
|
return (c[2], c[1], c[0]) if bgr else c |
|
|
|
|
|
@staticmethod |
|
|
def hex2rgb(h): |
|
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) |
|
|
|
|
|
DEFAULT_COLOR_PALETTE = Colors() |
|
|
def get_color(idx): |
|
|
if idx == -1: |
|
|
return 255 |
|
|
else: |
|
|
return DEFAULT_COLOR_PALETTE(idx) |
|
|
|
|
|
|
|
|
|
|
|
VALID_BODY_PARTS_V2 = [ |
|
|
'hair', 'headwear', 'face', 'eyes', 'eyewear', 'ears', 'earwear', 'nose', 'mouth', |
|
|
'neck', 'neckwear', 'topwear', 'handwear', 'bottomwear', 'legwear', 'footwear', |
|
|
'tail', 'wings', 'objects' |
|
|
] |
|
|
|
|
|
|
|
|
def seed_everything(seed): |
|
|
random.seed(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
|
|
|
def load_image(imgp: str, mode="RGB", output_type='numpy'): |
|
|
""" |
|
|
return RGB image as output_type |
|
|
""" |
|
|
img = Image.open(imgp).convert(mode) |
|
|
if output_type == 'numpy': |
|
|
img = np.array(img) |
|
|
if len(img.shape) == 2: |
|
|
img = img[..., None] |
|
|
return img |
|
|
|
|
|
|
|
|
def bbox_intersection(xyxy, xyxy2): |
|
|
x1, y1, x2, y2 = xyxy2 |
|
|
dx1, dy1, dx2, dy2 = xyxy |
|
|
ix1, ix2 = max(x1, dx1), min(x2, dx2) |
|
|
iy1, iy2 = max(y1, dy1), min(y2, dy2) |
|
|
if ix2 >= ix1 and iy2 >= iy1: |
|
|
return [ix1, iy1, ix2, iy2] |
|
|
return None |
|
|
|
|
|
|
|
|
_IMG2TENSOR_IMGTYPE = (Image.Image, np.ndarray, str) |
|
|
_IMG2TENSOR_DIMORDER = ('bchw', 'chw', 'hwc') |
|
|
def img2tensor(img: Union[Image.Image, np.ndarray, str, torch.Tensor], normalize = False, mean = 0., std = 255., dim_order: str = 'bchw', dtype=torch.float32, device: str = 'cpu', imread_mode='RGB'): |
|
|
|
|
|
def _check_normalize_values(values, num_channels): |
|
|
if isinstance(values, tuple): |
|
|
values = list(values) |
|
|
elif isinstance(values, (int, float, np.ScalarType)): |
|
|
values = [values] * num_channels |
|
|
else: |
|
|
assert isinstance(values, (np.ndarray, list)) |
|
|
if len(values) > num_channels: |
|
|
values = values[:num_channels] |
|
|
assert len(values) == num_channels |
|
|
return values |
|
|
|
|
|
assert isinstance(img, _IMG2TENSOR_IMGTYPE) |
|
|
assert dim_order in _IMG2TENSOR_DIMORDER |
|
|
|
|
|
if isinstance(img, str): |
|
|
img = load_image(img, mode=imread_mode) |
|
|
|
|
|
if isinstance(img, Image.Image): |
|
|
img = pil_to_tensor(img) |
|
|
if dim_order == 'bchw': |
|
|
img = img.unsqueeze(0) |
|
|
elif dim_order == 'hwc': |
|
|
img = img.permute((1, 2, 0)) |
|
|
else: |
|
|
if img.ndim == 2: |
|
|
img = img[..., None] |
|
|
else: |
|
|
assert img.ndim == 3 |
|
|
if dim_order == 'bchw': |
|
|
img = rearrange(img, 'h w c -> c h w')[None, ...] |
|
|
elif dim_order == 'chw': |
|
|
img = rearrange(img, 'h w c -> c h w') |
|
|
img = torch.from_numpy(np.ascontiguousarray(img)) |
|
|
|
|
|
|
|
|
img = img.to(device=device, dtype=dtype) |
|
|
|
|
|
if normalize: |
|
|
|
|
|
if dim_order == 'bchw': |
|
|
c = img.shape[1] |
|
|
elif dim_order == 'chw': |
|
|
c = img.shape[0] |
|
|
else: |
|
|
c = img.shape[2] |
|
|
|
|
|
if mean is not None and std is not None: |
|
|
mean = _check_normalize_values(mean, c) |
|
|
std = _check_normalize_values(std, c) |
|
|
img = tv_functional.normalize(img, mean=mean, std=std) |
|
|
|
|
|
return img |
|
|
|
|
|
|
|
|
|
|
|
def optim_depth(part_dict_list, fullpage): |
|
|
window = create_window(11, 1.5, 3) |
|
|
depth_map = np.full(fullpage.shape[:2], 2, dtype=np.float32) |
|
|
|
|
|
ssim_map = np.full(fullpage.shape[:2], 0., dtype=np.float32) |
|
|
depth_order_map = np.full(fullpage.shape[:2], -1, dtype=np.int16) |
|
|
color_order_map = depth_order_map.copy() |
|
|
fullpage_torch = img2tensor(fullpage[..., :3]) |
|
|
|
|
|
for ii, pd in enumerate(part_dict_list): |
|
|
x1, y1, x2, y2 = pd['xyxy'] |
|
|
xyxy = pd['xyxy'] |
|
|
mask = pd['mask'] |
|
|
region_torch = img2tensor(pd['img'][..., :3]) |
|
|
with torch.no_grad(): |
|
|
ssim_map_region = calculate_ssim_map(fullpage_torch[:, :, y1: y2, x1: x2], region_torch, window, 255, use_padding=True) |
|
|
ssim_map_region = ssim_map_region.to(dtype=torch.float32, device='cpu')[0].numpy() |
|
|
ssim_update_mask = np.bitwise_and(ssim_map_region > ssim_map[y1: y2, x1: x2], mask) |
|
|
|
|
|
if np.any(ssim_update_mask): |
|
|
upd_mask = ssim_update_mask.astype(np.int32) |
|
|
color_order_map[y1: y2, x1: x2] = color_order_map[y1: y2, x1: x2] * (1-upd_mask) + upd_mask * np.full((y2 - y1, x2 - x1), ii, dtype=np.int16) |
|
|
ssim_map[y1: y2, x1: x2] = ssim_map[y1: y2, x1: x2] * (1-upd_mask) + upd_mask * ssim_map_region |
|
|
|
|
|
depth_update_mask = np.bitwise_and(pd['depth'] < depth_map[y1: y2, x1: x2], mask) |
|
|
if np.any(depth_update_mask): |
|
|
depth_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_map[y1: y2, x1: x2] + depth_update_mask * pd['depth'] |
|
|
depth_order_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_order_map[y1: y2, x1: x2] + depth_update_mask * np.full((y2 - y1, x2 - x1), ii, dtype=np.int16) |
|
|
|
|
|
|
|
|
for _ in range(1): |
|
|
for ii in range(len(part_dict_list)): |
|
|
pd = part_dict_list[ii] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x1, y1, x2, y2 = pd['xyxy'] |
|
|
mask = pd['mask'] |
|
|
color_mask = color_order_map[y1: y2, x1: x2] == ii |
|
|
if not np.any(color_mask): |
|
|
continue |
|
|
depth = pd['depth'] |
|
|
depth_region = depth_map[y1: y2, x1: x2] |
|
|
max_shift = np.max((depth - depth_region) * color_mask * mask) |
|
|
if max_shift == 0: |
|
|
continue |
|
|
max_shift += 0.001 |
|
|
min_shift = np.min((depth - depth_region) * mask) |
|
|
|
|
|
shift_list = np.linspace(0., max_shift, num=20) |
|
|
|
|
|
|
|
|
score_map = depth[..., None] - shift_list[None, None] < depth_region[..., None] |
|
|
score_map = reduce((score_map == color_mask[..., None]).astype(np.float32) * mask[..., None], 'h w c -> c', reduction='mean') |
|
|
shift = shift_list[np.argmax(score_map)] |
|
|
if shift > 0: |
|
|
depth -= shift |
|
|
depth_update_mask = np.bitwise_and(depth < depth_region, mask) |
|
|
depth_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_map[y1: y2, x1: x2] + depth_update_mask * depth |
|
|
pd['depth'] = depth |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_parts(srcp, rotate=False): |
|
|
srcimg = osp.join(srcp, 'src_img.png') |
|
|
fullpage = np.array(Image.open(srcimg).convert('RGBA')) |
|
|
|
|
|
infop = osp.join(srcp, 'info.json') |
|
|
infos = json2dict(infop) |
|
|
|
|
|
part_dict_list = [] |
|
|
tag2pd = {} |
|
|
part_id = 0 |
|
|
|
|
|
min_sz = 12 |
|
|
|
|
|
if rotate: |
|
|
fullpage = np.rot90(fullpage, 3, ) |
|
|
|
|
|
for tag, partdict in infos['parts'].items(): |
|
|
img = Image.open(osp.join(srcp, tag + '.png')).convert('RGBA') |
|
|
depthp = osp.join(srcp, tag + '_depth.png') |
|
|
|
|
|
img = np.array(img) |
|
|
p_test = max(img.shape[:2]) // 10 |
|
|
mask = img[..., -1] > 10 |
|
|
if np.sum(mask[:-p_test, :-p_test]) > 4: |
|
|
if rotate: |
|
|
img = np.rot90(img, 3) |
|
|
mask = np.rot90(mask, 3, ) |
|
|
|
|
|
xyxy = cv2.boundingRect(cv2.findNonZero(mask.astype(np.uint8))) |
|
|
xyxy = np.array(xyxy) |
|
|
h, w = xyxy[2:] |
|
|
xyxy[2] += xyxy[0] |
|
|
xyxy[3] += xyxy[1] |
|
|
p = min_sz - w |
|
|
if p > 0: |
|
|
if xyxy[0] >= p: |
|
|
xyxy[0] -= p |
|
|
else: |
|
|
xyxy[2] += p |
|
|
p = min_sz - h |
|
|
if p > 0: |
|
|
if xyxy[1] >= p: |
|
|
xyxy[1] -= p |
|
|
else: |
|
|
xyxy[3] += p |
|
|
|
|
|
x1, y1, x2, y2 = xyxy |
|
|
depth = np.array(Image.open(depthp).convert('L')) |
|
|
if rotate: |
|
|
depth = np.rot90(depth, 3) |
|
|
dmin, dmax = partdict['depth_min'], partdict['depth_max'] |
|
|
|
|
|
mask = mask[y1: y2, x1: x2].copy() |
|
|
img = img[y1: y2, x1: x2].copy() |
|
|
depth = depth[y1: y2, x1: x2].copy() |
|
|
|
|
|
depth = np.array(depth, dtype=np.float32) / 255 * (dmax - dmin) + dmin |
|
|
tag2pd[tag] = {'img': img, 'depth': depth, 'part_id': part_id, 'xyxy': xyxy, 'mask': mask, 'tag': tag} |
|
|
part_dict_list.append(tag2pd[tag]) |
|
|
part_id += 1 |
|
|
|
|
|
return fullpage, infos, part_dict_list |
|
|
|
|
|
|
|
|
def json2dict(json_path: str): |
|
|
plower = json_path.lower() |
|
|
if plower.endswith('.gz'): |
|
|
with gzip.open(json_path, 'rt', encoding='utf8') as f: |
|
|
metadata = json.load(f) |
|
|
return metadata |
|
|
|
|
|
if plower.endswith('.yaml'): |
|
|
with open(json_path, 'r') as file: |
|
|
metadata = yaml.load(file, yaml.CSafeLoader) |
|
|
return metadata |
|
|
|
|
|
with open(json_path, 'r', encoding='utf8') as f: |
|
|
metadata = json.loads(f.read()) |
|
|
return metadata |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
|
code modified from |
|
|
https://github.com/VainF/pytorch-msssim/blob/master/pytorch_msssim/ssim.py |
|
|
''' |
|
|
|
|
|
import torch |
|
|
import torch.jit |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
@torch.jit.script |
|
|
def create_window(window_size: int = 11, sigma: float = 1.5, channel: int = 3): |
|
|
''' |
|
|
Create 1-D gauss kernel |
|
|
:param window_size: the size of gauss kernel |
|
|
:param sigma: sigma of normal distribution |
|
|
:param channel: input channel |
|
|
:return: 1D kernel |
|
|
''' |
|
|
coords = torch.arange(window_size, dtype=torch.float) |
|
|
coords -= window_size // 2 |
|
|
|
|
|
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2)) |
|
|
g /= g.sum() |
|
|
|
|
|
g = g.reshape(1, 1, 1, -1).repeat(channel, 1, 1, 1) |
|
|
return g |
|
|
|
|
|
|
|
|
@torch.jit.script |
|
|
def _gaussian_filter(x, window_1d, use_padding: bool): |
|
|
''' |
|
|
Blur input with 1-D kernel |
|
|
:param x: batch of tensors to be blured |
|
|
:param window_1d: 1-D gauss kernel |
|
|
:param use_padding: padding image before conv |
|
|
:return: blured tensors |
|
|
''' |
|
|
C = x.shape[1] |
|
|
padding = 0 |
|
|
if use_padding: |
|
|
window_size = window_1d.shape[3] |
|
|
padding = window_size // 2 |
|
|
out = F.conv2d(x, window_1d, stride=1, padding=(0, padding), groups=C) |
|
|
out = F.conv2d(out, window_1d.transpose(2, 3), stride=1, padding=(padding, 0), groups=C) |
|
|
return out |
|
|
|
|
|
|
|
|
@torch.jit.script |
|
|
def calculate_ssim_map(X, Y, window, data_range: float, use_padding: bool=True): |
|
|
''' |
|
|
Calculate ssim index for X and Y |
|
|
:param X: images |
|
|
:param Y: images |
|
|
:param window: 1-D gauss kernel |
|
|
:param data_range: value range of input images. (usually 1.0 or 255) |
|
|
:param use_padding: padding image before conv |
|
|
:return: |
|
|
''' |
|
|
|
|
|
K1 = 0.01 |
|
|
K2 = 0.03 |
|
|
compensation = 1.0 |
|
|
|
|
|
C1 = (K1 * data_range) ** 2 |
|
|
C2 = (K2 * data_range) ** 2 |
|
|
|
|
|
mu1 = _gaussian_filter(X, window, use_padding) |
|
|
mu2 = _gaussian_filter(Y, window, use_padding) |
|
|
sigma1_sq = _gaussian_filter(X * X, window, use_padding) |
|
|
sigma2_sq = _gaussian_filter(Y * Y, window, use_padding) |
|
|
sigma12 = _gaussian_filter(X * Y, window, use_padding) |
|
|
|
|
|
mu1_sq = mu1.pow(2) |
|
|
mu2_sq = mu2.pow(2) |
|
|
mu1_mu2 = mu1 * mu2 |
|
|
|
|
|
sigma1_sq = compensation * (sigma1_sq - mu1_sq) |
|
|
sigma2_sq = compensation * (sigma2_sq - mu2_sq) |
|
|
sigma12 = compensation * (sigma12 - mu1_mu2) |
|
|
|
|
|
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) |
|
|
|
|
|
cs_map = F.relu(cs_map) |
|
|
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map |
|
|
|
|
|
ssim_val = ssim_map.mean(dim=(1)) |
|
|
return ssim_val |
|
|
|
|
|
|
|
|
@torch.jit.script |
|
|
def ssim(X, Y, window, data_range: float, use_padding: bool=False): |
|
|
''' |
|
|
Calculate ssim index for X and Y |
|
|
:param X: images |
|
|
:param Y: images |
|
|
:param window: 1-D gauss kernel |
|
|
:param data_range: value range of input images. (usually 1.0 or 255) |
|
|
:param use_padding: padding image before conv |
|
|
:return: |
|
|
''' |
|
|
|
|
|
K1 = 0.01 |
|
|
K2 = 0.03 |
|
|
compensation = 1.0 |
|
|
|
|
|
C1 = (K1 * data_range) ** 2 |
|
|
C2 = (K2 * data_range) ** 2 |
|
|
|
|
|
mu1 = _gaussian_filter(X, window, use_padding) |
|
|
mu2 = _gaussian_filter(Y, window, use_padding) |
|
|
sigma1_sq = _gaussian_filter(X * X, window, use_padding) |
|
|
sigma2_sq = _gaussian_filter(Y * Y, window, use_padding) |
|
|
sigma12 = _gaussian_filter(X * Y, window, use_padding) |
|
|
|
|
|
mu1_sq = mu1.pow(2) |
|
|
mu2_sq = mu2.pow(2) |
|
|
mu1_mu2 = mu1 * mu2 |
|
|
|
|
|
sigma1_sq = compensation * (sigma1_sq - mu1_sq) |
|
|
sigma2_sq = compensation * (sigma2_sq - mu2_sq) |
|
|
sigma12 = compensation * (sigma12 - mu1_mu2) |
|
|
|
|
|
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) |
|
|
|
|
|
cs_map = F.relu(cs_map) |
|
|
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map |
|
|
|
|
|
ssim_val = ssim_map.mean(dim=(1, 2, 3)) |
|
|
cs = cs_map.mean(dim=(1, 2, 3)) |
|
|
|
|
|
return ssim_val, cs |
|
|
|
|
|
|
|
|
@torch.jit.script |
|
|
def ms_ssim(X, Y, window, data_range: float, weights, use_padding: bool=False, eps: float=1e-8): |
|
|
''' |
|
|
interface of ms-ssim |
|
|
:param X: a batch of images, (N,C,H,W) |
|
|
:param Y: a batch of images, (N,C,H,W) |
|
|
:param window: 1-D gauss kernel |
|
|
:param data_range: value range of input images. (usually 1.0 or 255) |
|
|
:param weights: weights for different levels |
|
|
:param use_padding: padding image before conv |
|
|
:param eps: use for avoid grad nan. |
|
|
:return: |
|
|
''' |
|
|
weights = weights[:, None] |
|
|
|
|
|
levels = weights.shape[0] |
|
|
vals = [] |
|
|
for i in range(levels): |
|
|
ss, cs = ssim(X, Y, window=window, data_range=data_range, use_padding=use_padding) |
|
|
|
|
|
if i < levels-1: |
|
|
vals.append(cs) |
|
|
X = F.avg_pool2d(X, kernel_size=2, stride=2, ceil_mode=True) |
|
|
Y = F.avg_pool2d(Y, kernel_size=2, stride=2, ceil_mode=True) |
|
|
else: |
|
|
vals.append(ss) |
|
|
|
|
|
vals = torch.stack(vals, dim=0) |
|
|
|
|
|
vals = vals.clamp_min(eps) |
|
|
|
|
|
ms_ssim_val = torch.prod(vals[:-1] ** weights[:-1] * vals[-1:] ** weights[-1:], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
return ms_ssim_val |
|
|
|
|
|
|
|
|
class SSIMCriteria(torch.jit.ScriptModule): |
|
|
__constants__ = ['data_range', 'use_padding'] |
|
|
|
|
|
def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False): |
|
|
''' |
|
|
:param window_size: the size of gauss kernel |
|
|
:param window_sigma: sigma of normal distribution |
|
|
:param data_range: value range of input images. (usually 1.0 or 255) |
|
|
:param channel: input channels (default: 3) |
|
|
:param use_padding: padding image before conv |
|
|
''' |
|
|
super().__init__() |
|
|
assert window_size % 2 == 1, 'Window size must be odd.' |
|
|
window = create_window(window_size, window_sigma, channel) |
|
|
self.register_buffer('window', window) |
|
|
self.data_range = data_range |
|
|
self.use_padding = use_padding |
|
|
|
|
|
@torch.jit.script_method |
|
|
def forward(self, X, Y): |
|
|
r = ssim(X, Y, window=self.window, data_range=self.data_range, use_padding=self.use_padding) |
|
|
return r[0] |
|
|
|
|
|
|
|
|
class MS_SSIM(torch.jit.ScriptModule): |
|
|
__constants__ = ['data_range', 'use_padding', 'eps'] |
|
|
|
|
|
def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False, weights=None, levels=None, eps=1e-8): |
|
|
''' |
|
|
class for ms-ssim |
|
|
:param window_size: the size of gauss kernel |
|
|
:param window_sigma: sigma of normal distribution |
|
|
:param data_range: value range of input images. (usually 1.0 or 255) |
|
|
:param channel: input channels |
|
|
:param use_padding: padding image before conv |
|
|
:param weights: weights for different levels. (default [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]) |
|
|
:param levels: number of downsampling |
|
|
:param eps: Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf. |
|
|
''' |
|
|
super().__init__() |
|
|
assert window_size % 2 == 1, 'Window size must be odd.' |
|
|
self.data_range = data_range |
|
|
self.use_padding = use_padding |
|
|
self.eps = eps |
|
|
|
|
|
window = create_window(window_size, window_sigma, channel) |
|
|
self.register_buffer('window', window) |
|
|
|
|
|
if weights is None: |
|
|
weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333] |
|
|
weights = torch.tensor(weights, dtype=torch.float) |
|
|
|
|
|
if levels is not None: |
|
|
weights = weights[:levels] |
|
|
weights = weights / weights.sum() |
|
|
|
|
|
self.register_buffer('weights', weights) |
|
|
|
|
|
@torch.jit.script_method |
|
|
def forward(self, X, Y): |
|
|
return ms_ssim(X, Y, window=self.window, data_range=self.data_range, weights=self.weights, |
|
|
use_padding=self.use_padding, eps=self.eps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def img_alpha_blending( |
|
|
drawables: List[np.ndarray], |
|
|
xyxy=None, |
|
|
output_type='numpy', |
|
|
final_size=None, |
|
|
max_depth_val=255, |
|
|
premultiplied=True, |
|
|
): |
|
|
''' |
|
|
final_size: (h, w) |
|
|
''' |
|
|
|
|
|
if isinstance(drawables, (np.ndarray, dict)): |
|
|
drawables = [drawables] |
|
|
|
|
|
|
|
|
if xyxy is not None: |
|
|
final_size = [xyxy[3] - xyxy[1], xyxy[2] - xyxy[0]] |
|
|
x1, y1, x2, y2 = xyxy |
|
|
elif final_size is None: |
|
|
d = drawables[0] |
|
|
if isinstance(d, dict): |
|
|
d = d['img'] |
|
|
final_size = d.shape[:2] |
|
|
|
|
|
final_rgb = np.zeros((final_size[0], final_size[1], 3), dtype=np.float32) |
|
|
final_alpha = np.zeros_like(final_rgb[..., [0]]) |
|
|
final_depth = None |
|
|
|
|
|
for drawable_img in drawables: |
|
|
dxyxy = None |
|
|
depth = None |
|
|
if isinstance(drawable_img, dict): |
|
|
depth = drawable_img.get('depth', None) |
|
|
tag = drawable_img.get('tag', None) |
|
|
if depth is not None: |
|
|
if depth.ndim == 2: |
|
|
depth = depth[..., None] |
|
|
if final_depth is None: |
|
|
final_depth = np.full_like(final_alpha, fill_value=max_depth_val) |
|
|
if 'xyxy' in drawable_img: |
|
|
dxyxy = drawable_img['xyxy'] |
|
|
dx1, dy1, dx2, dy2 = dxyxy |
|
|
drawable_img = drawable_img['img'] |
|
|
if dxyxy is not None: |
|
|
if dx1 < 0: |
|
|
drawable_img = drawable_img[:, -dx1:] |
|
|
if depth is not None: |
|
|
depth = depth[:, -dx1:] |
|
|
dx1 = 0 |
|
|
if dy1 < 0: |
|
|
drawable_img = drawable_img[-dy1:] |
|
|
if depth is not None: |
|
|
depth = depth[-dy1:] |
|
|
dy1 = 0 |
|
|
|
|
|
if drawable_img.ndim == 3 and drawable_img.shape[-1] == 3: |
|
|
drawable_alpha = np.ones_like(drawable_img[..., [-1]]) |
|
|
else: |
|
|
drawable_alpha = drawable_img[..., [-1]] / 255 |
|
|
|
|
|
drawable_img = drawable_img[..., :3] |
|
|
|
|
|
if xyxy is not None: |
|
|
if dxyxy is None: |
|
|
drawable_img = drawable_img[y1: y2, x1: x2] |
|
|
else: |
|
|
intersection = bbox_intersection(xyxy, dxyxy) |
|
|
if intersection is None: |
|
|
continue |
|
|
ix1, iy1, ix2, iy2 = intersection |
|
|
drawable_alpha = drawable_alpha[iy1-dy1: iy2-dy1, ix1-dx1: ix2-dx1] |
|
|
final_alpha[iy1-y1: iy2-y1, ix1-x1: ix2-x1] += drawable_alpha |
|
|
drawable_img = drawable_img[iy1-dy1: iy2-dy1, ix1-dx1: ix2-dx1] |
|
|
final_rgb[iy1-y1: iy2-y1, ix1-x1: ix2-x1] = final_rgb[iy1-y1: iy2-y1, ix1-x1: ix2-x1] * (1-drawable_alpha) + drawable_img |
|
|
continue |
|
|
|
|
|
if dxyxy is None: |
|
|
if depth is not None: |
|
|
update_mask = (final_depth > depth).astype(np.uint8) |
|
|
final_depth = update_mask * depth + (1-update_mask) * final_depth |
|
|
final_rgb = update_mask * (final_rgb * (1-drawable_alpha) + drawable_img) + \ |
|
|
(1 - update_mask) * (drawable_img * (1-final_alpha) + final_rgb) |
|
|
final_alpha = np.clip(final_alpha + drawable_alpha, 0, 1) |
|
|
else: |
|
|
final_alpha += drawable_alpha |
|
|
final_alpha = np.clip(final_alpha, 0, 1) |
|
|
if not premultiplied: |
|
|
drawable_img = drawable_img * drawable_alpha |
|
|
final_rgb = final_rgb * (1 - drawable_alpha) + drawable_img |
|
|
else: |
|
|
if depth is not None: |
|
|
update_mask = (final_depth[dy1: dy2, dx1: dx2] > depth).astype(np.uint8) |
|
|
update_mask = update_mask * (drawable_alpha > 0.1) |
|
|
final_depth[dy1: dy2, dx1: dx2] = update_mask * depth + (1-update_mask) * final_depth[dy1: dy2, dx1: dx2] |
|
|
final_rgb[dy1: dy2, dx1: dx2] = update_mask * (final_rgb[dy1: dy2, dx1: dx2] * (1-drawable_alpha) + drawable_img) + \ |
|
|
(1 - update_mask) * (drawable_img * (1-final_alpha[dy1: dy2, dx1: dx2]) + final_rgb[dy1: dy2, dx1: dx2]) |
|
|
final_alpha[dy1: dy2, dx1: dx2] = np.clip(final_alpha[dy1: dy2, dx1: dx2] + drawable_alpha, 0, 1) |
|
|
else: |
|
|
final_alpha[dy1: dy2, dx1: dx2] += drawable_alpha |
|
|
final_alpha = np.clip(final_alpha, 0, 1) |
|
|
final_rgb[dy1: dy2, dx1: dx2] = final_rgb[dy1: dy2, dx1: dx2] * (1-drawable_alpha) + drawable_img |
|
|
|
|
|
final_alpha = np.clip(final_alpha, 0, 1) * 255 |
|
|
final = np.concatenate([final_rgb, final_alpha], axis=2) |
|
|
final = np.clip(final, 0, 255).astype(np.uint8) |
|
|
|
|
|
output_type = output_type.lower() |
|
|
if output_type == 'pil': |
|
|
final = Image.fromarray(final) |
|
|
elif output_type == 'dict': |
|
|
final = { |
|
|
'img': final |
|
|
} |
|
|
if final_depth is not None: |
|
|
final['depth'] = final_depth |
|
|
|
|
|
return final |
|
|
|
|
|
|
|
|
def rgba_to_rgb_fixbg(img: np.ndarray, background_color=255): |
|
|
if isinstance(img, Image.Image): |
|
|
img = np.array(img) |
|
|
assert img.ndim == 3 |
|
|
if img.shape[-1] == 3: |
|
|
return img |
|
|
if isinstance(background_color, int): |
|
|
bg = np.full_like(img[..., :3], fill_value=background_color) |
|
|
else: |
|
|
background_color = np.array(background_color)[:3].astype(np.uint8) |
|
|
bg = np.full_like(img[..., :3], fill_value=255) |
|
|
bg[..., :3] = background_color |
|
|
return img_alpha_blending([bg, img])[..., :3].copy() |
|
|
|