 
				asigalov61/Orpheus-Music-Transformer
		
	
				Updated
					
				
				
				
	
				• 
					
					7
				
Error code:   StreamingRowsError
Exception:    CastError
Message:      Couldn't cast
mid: binary
__key__: string
__url__: string
png: null
to
{'png': Image(mode=None, decode=True, id=None), '__key__': Value(dtype='string', id=None), '__url__': Value(dtype='string', id=None)}
because column names don't match
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2285, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1888, in _iter_arrow
                  pa_table = cast_table_to_features(pa_table, self.features)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2215, in cast_table_to_features
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              mid: binary
              __key__: string
              __url__: string
              png: null
              to
              {'png': Image(mode=None, decode=True, id=None), '__key__': Value(dtype='string', id=None), '__url__': Value(dtype='string', id=None)}
              because column names don't matchNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
# It is recommended that you upgrade pip and setuptools prior to install for max compatibility
!pip install --upgrade pip
!pip install --upgrade setuptools
# The following command will install Godzilla MIDI Dataset for CPU-only search
# Please note that CPU search is quite slow and it requires a minimum of 128GB RAM to work for full searches
!pip install -U godzillamididataset
# The following command will install Godzilla MIDI Dataset for fast GPU search
# Please note that GPU search requires at least 30GB GPU VRAM for full searches at float16 precision
!pip install -U godzillamididataset[gpu]
# The following command will install packages for Fast Parallel Extract module
# It will allow you to extract (untar) Godzilla MIDI Dataset much faster
!sudo apt update -y
!sudo apt install -y p7zip-full
!sudo apt install -y pigz
# The following command will install packages for midi_to_colab_audio module
# It will allow you to render Godzilla MIDI Dataset MIDIs to audio
!sudo apt update -y
!sudo apt install fluidsynth
# Import main Godzilla MIDI Dataset module
import godzillamididataset
# Download Godzilla MIDI Dataset from Hugging Face repo
godzillamididataset.download_dataset()
# Extract Godzilla MIDI Dataset with built-in function (slow)
godzillamididataset.parallel_extract()
# Or you can extract much faster if you have installed the optional packages for Fast Parallel Extract
# from godzillamididataset import fast_parallel_extract
# fast_parallel_extract.fast_parallel_extract()
# Load all MIDIs basic signatures
sigs_data = godzillamididataset.read_jsonl()
# Create signatures dictionaries
sigs_dicts = godzillamididataset.load_signatures(sigs_data)
# Pre-compute signatures
X, global_union = godzillamididataset.precompute_signatures(sigs_dicts)
# Run the search
# IO dirs will be created on the first run of the following function
# Do not forget to put your master MIDIs into created Master-MIDI-Dataset folder
# The full search for each master MIDI takes about 2-3 sec on a GPU and 4-5 min on a CPU
godzillamididataset.search_and_filter(sigs_dicts, X, global_union)
Godzilla-MIDI-Dataset/              # Dataset root dir
├── ARTWORK/                        # Concept artwork
│   ├── Illustrations/              # Concept illustrations
│   ├── Logos/                      # Dataset logos
│   └── Posters/                    # Dataset posters
├── CODE/                           # Supplemental python code and python modules
├── DATA/                           # Dataset (meta)data dir
│   ├── Averages/                   # Averages data for all MIDIs and clean MIDIs
│   ├── Basic Features/             # All basic features for all clean MIDIs
│   ├── Files Lists/                # Files lists by MIDIs types and categories
│   ├── Identified MIDIs/           # Comprehensive data for identified MIDIs
│   ├── Metadata/                   # Raw metadata from all MIDIs
│   ├── Mono Melodies/              # Data for all MIDIs with monophonic melodies
│   ├── Pitches Patches Counts/     # Pitches-patches counts for all MIDIs 
│   ├── Pitches Sums/               # Pitches sums for all MIDIs
│   ├── Signatures/                 # Signatures data for all MIDIs and MIDIs subsets
│   └── Text Captions/              # Music description text captions for all MIDIs
├── MIDIs/                          # Root MIDIs dir
└── SOUNDFONTS/                     # Select high-quality soundfont banks to render MIDIs
@misc{GodzillaMIDIDataset2025,
  title        = {Godzilla MIDI Dataset: Enormous, comprehensive, normalized and searchable MIDI dataset for MIR and symbolic music AI purposes},
  author       = {Alex Lev},
  publisher    = {Project Los Angeles / Tegridy Code},
  year         = {2025},
  url          = {https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset}
@misc {breadai_2025,
    author       = { {BreadAi} },
    title        = { Sourdough-midi-dataset (Revision cd19431) },
    year         = 2025,
    url          = {\url{https://huggingface.co/datasets/BreadAi/Sourdough-midi-dataset}},
    doi          = { 10.57967/hf/4743 },
    publisher    = { Hugging Face }
}
@inproceedings{bradshawaria,
  title={Aria-MIDI: A Dataset of Piano MIDI Files for Symbolic Music Modeling},
  author={Bradshaw, Louis and Colton, Simon},
  booktitle={International Conference on Learning Representations},
  year={2025},
  url={https://openreview.net/forum?id=X5hrhgndxW}, 
}
@misc{TegridyMIDIDataset2025,
  title        = {Tegridy MIDI Dataset: Ultimate Multi-Instrumental MIDI Dataset for MIR and Music AI purposes},
  author       = {Alex Lev},
  publisher    = {Project Los Angeles / Tegridy Code},
  year         = {2025},
  url          = {https://github.com/asigalov61/Tegridy-MIDI-Dataset}