Bridging the Data Gap: Spatially Conditioned Diffusion Model for Anomaly Generation in Photovoltaic Electroluminescence Images
Paper
•
2511.09604
•
Published
image
imagewidth (px) 512
512
| label
class label 2
classes |
|---|---|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
|
1el_images_train
|
E-SCDD is an extended electroluminescence (EL) imagery dataset for photovoltaic (PV) module analysis.
It expands the existing BenchmarkELimages dataset by adding additional EL samples,
refined pixel-level annotations, and standardized splits to support research on:
Images: EL imagery of PV modules, including multiple defect types such as cracks and inactive regions.
Annotations: pixel-level segmentation masks provided in indexed PNG format.
Splits: train, validation, and test folders following the original schema
This dataset extends and builds upon the BenchmarkELimages dataset, originally released under the MIT License.
Please cite both works when using this dataset.
@misc{hanifi2025bridgingdatagapspatially,
title={Bridging the Data Gap: Spatially Conditioned Diffusion Model for Anomaly Generation in Photovoltaic Electroluminescence Images},
author={Shiva Hanifi and Sasan Jafarnejad and Marc Köntges and Andrej Wentnagel and Andreas Kokkas and Raphael Frank},
year={2025},
eprint={2511.09604},
archivePrefix={arXiv},
primaryClass={eess.IV},
url={https://arxiv.org/abs/2511.09604},
}
@article{pratt2023benchmark,
title={A benchmark dataset for defect detection and classification in electroluminescence images of PV modules using semantic segmentation},
author={Pratt, Lawrence and Mattheus, Jana and Klein, Richard},
journal={Systems and Soft Computing},
pages={200048},
year={2023},
publisher={Elsevier} }