davanstrien HF Staff commited on
Commit
90ace90
Β·
1 Parent(s): 2204718

Add DoTS.ocr to documentation with official --secrets syntax

Browse files
Files changed (1) hide show
  1. README.md +33 -9
README.md CHANGED
@@ -16,6 +16,7 @@ Run OCR on any dataset without needing your own GPU:
16
  ```bash
17
  # Quick test with 10 samples
18
  hf jobs uv run --flavor l4x1 \
 
19
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
20
  your-input-dataset your-output-dataset \
21
  --max-samples 10
@@ -71,6 +72,17 @@ Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggi
71
  - πŸ” **Multi-column Layouts** - Handles complex document structures
72
  - ✨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking`
73
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  ## πŸ†• New Features
76
 
@@ -118,15 +130,24 @@ No GPU? No problem! Run on HF infrastructure:
118
  ```bash
119
  # Basic OCR job
120
  hf jobs uv run --flavor l4x1 \
 
121
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
122
  your-input-dataset your-output-dataset
123
 
 
 
 
 
 
 
 
 
 
124
 
125
  # Real example with UFO dataset πŸ›Έ
126
  hf jobs uv run \
127
  --flavor a10g-large \
128
- --image vllm/vllm-openai:latest \
129
- -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
130
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
131
  davanstrien/ufo-ColPali \
132
  your-username/ufo-ocr \
@@ -136,9 +157,8 @@ hf jobs uv run \
136
 
137
  # NuMarkdown with reasoning traces for complex documents
138
  hf jobs uv run \
139
- --image vllm/vllm-openai:latest \
140
  --flavor l4x4 \
141
- -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
142
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \
143
  your-input-dataset your-output-dataset \
144
  --max-samples 50 \
@@ -147,7 +167,7 @@ hf jobs uv run \
147
 
148
  # Private dataset with custom settings
149
  hf jobs uv run --flavor l40sx1 \
150
- -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
151
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
152
  private-input private-output \
153
  --private \
@@ -205,14 +225,18 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h
205
  | `--shuffle` | False | Shuffle dataset before processing |
206
  | `--seed` | `42` | Random seed for shuffling |
207
 
208
- *RolmOCR uses batch size 16
209
  **RolmOCR uses 16384/8192
210
 
211
- ### RolmOCR Specific
212
 
 
213
  - Output column is auto-generated from model name (e.g., `rolmocr_text`)
214
  - Use `--output-column` to override the default name
215
 
216
- πŸ’‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
 
 
 
217
 
218
- More OCR VLM Scripts coming soon! Stay tuned for updates!
 
16
  ```bash
17
  # Quick test with 10 samples
18
  hf jobs uv run --flavor l4x1 \
19
+ --secrets HF_TOKEN \
20
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
21
  your-input-dataset your-output-dataset \
22
  --max-samples 10
 
72
  - πŸ” **Multi-column Layouts** - Handles complex document structures
73
  - ✨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking`
74
 
75
+ ### DoTS.ocr (`dots-ocr.py`)
76
+
77
+ Compact multilingual OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) with only 1.7B parameters:
78
+
79
+ - 🌍 **100+ Languages** - Extensive multilingual support
80
+ - πŸ“ **Simple OCR** - Clean text extraction (default mode)
81
+ - πŸ“Š **Layout Analysis** - Optional structured output with bboxes and categories
82
+ - πŸ“ **Formula recognition** - LaTeX format support
83
+ - 🎯 **Compact** - Only 1.7B parameters, efficient on smaller GPUs
84
+ - πŸ”€ **Flexible prompts** - Switch between OCR, layout-all, and layout-only modes
85
+
86
 
87
  ## πŸ†• New Features
88
 
 
130
  ```bash
131
  # Basic OCR job
132
  hf jobs uv run --flavor l4x1 \
133
+ --secrets HF_TOKEN \
134
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
135
  your-input-dataset your-output-dataset
136
 
137
+ # DoTS.ocr - Multilingual OCR with compact 1.7B model
138
+ hf jobs uv run --flavor a100-large \
139
+ --secrets HF_TOKEN \
140
+ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
141
+ davanstrien/ufo-ColPali \
142
+ your-username/ufo-ocr \
143
+ --batch-size 256 \
144
+ --max-samples 1000 \
145
+ --shuffle
146
 
147
  # Real example with UFO dataset πŸ›Έ
148
  hf jobs uv run \
149
  --flavor a10g-large \
150
+ --secrets HF_TOKEN \
 
151
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
152
  davanstrien/ufo-ColPali \
153
  your-username/ufo-ocr \
 
157
 
158
  # NuMarkdown with reasoning traces for complex documents
159
  hf jobs uv run \
 
160
  --flavor l4x4 \
161
+ --secrets HF_TOKEN \
162
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \
163
  your-input-dataset your-output-dataset \
164
  --max-samples 50 \
 
167
 
168
  # Private dataset with custom settings
169
  hf jobs uv run --flavor l40sx1 \
170
+ --secrets HF_TOKEN \
171
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
172
  private-input private-output \
173
  --private \
 
225
  | `--shuffle` | False | Shuffle dataset before processing |
226
  | `--seed` | `42` | Random seed for shuffling |
227
 
228
+ *RolmOCR and DoTS use batch size 16
229
  **RolmOCR uses 16384/8192
230
 
231
+ ### Script-Specific Options
232
 
233
+ **RolmOCR**:
234
  - Output column is auto-generated from model name (e.g., `rolmocr_text`)
235
  - Use `--output-column` to override the default name
236
 
237
+ **DoTS.ocr**:
238
+ - `--prompt-mode`: Choose `ocr` (default), `layout-all`, or `layout-only`
239
+ - `--custom-prompt`: Override with custom prompt text
240
+ - `--output-column`: Output column name (default: `markdown`)
241
 
242
+ πŸ’‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 256` on A100)