language: en
license: mit
tags:
  - exbert
datasets:
  - squad_v2
thumbnail: >-
  https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
model-index:
  - name: deepset/roberta-base-squad2-distilled
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_v2
          type: squad_v2
          config: squad_v2
          split: validation
        metrics:
          - type: exact_match
            value: 80.8593
            name: Exact Match
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVjNzkxNmNiNDkzNzdiYjJjZGM3ZTViMGJhOGM2ZjFmYjg1MjYxMDM2YzM5NWMwNDIyYzNlN2QwNGYyNDMzZSIsInZlcnNpb24iOjF9.Rgww8tf8D7nF2dh2U_DMrFzmp87k8s7RFibrDXSvQyA66PGWXwjlsd1552lzjHnNV5hvHUM1-h3PTuY_5p64BA
          - type: f1
            value: 84.0104
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTAyZDViNWYzNjA4OWQ5MzgyYmQ2ZDlhNWRhMTIzYTYxYzViMmI4NWE4ZGU5MzVhZTAwNTRlZmRlNWUwMjI0ZSIsInZlcnNpb24iOjF9.Er21BNgJ3jJXLuZtpubTYq9wCwO1i_VLQFwS5ET0e4eAYVVj0aOA40I5FvP5pZac3LjkCnVacxzsFWGCYVmnDA
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad
          type: squad
          config: plain_text
          split: validation
        metrics:
          - type: exact_match
            value: 86.225
            name: Exact Match
          - type: f1
            value: 92.483
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: adversarial_qa
          type: adversarial_qa
          config: adversarialQA
          split: validation
        metrics:
          - type: exact_match
            value: 29.9
            name: Exact Match
          - type: f1
            value: 41.183
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_adversarial
          type: squad_adversarial
          config: AddOneSent
          split: validation
        metrics:
          - type: exact_match
            value: 79.071
            name: Exact Match
          - type: f1
            value: 84.472
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts amazon
          type: squadshifts
          config: amazon
          split: test
        metrics:
          - type: exact_match
            value: 70.733
            name: Exact Match
          - type: f1
            value: 83.958
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts new_wiki
          type: squadshifts
          config: new_wiki
          split: test
        metrics:
          - type: exact_match
            value: 82.011
            name: Exact Match
          - type: f1
            value: 91.092
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts nyt
          type: squadshifts
          config: nyt
          split: test
        metrics:
          - type: exact_match
            value: 84.203
            name: Exact Match
          - type: f1
            value: 91.521
            name: F1
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squadshifts reddit
          type: squadshifts
          config: reddit
          split: test
        metrics:
          - type: exact_match
            value: 72.029
            name: Exact Match
          - type: f1
            value: 83.454
            name: F1
roberta-base distilled for Extractive QA
Overview
Language model: deepset/roberta-base-squad2-distilled
Language: English
Training data: SQuAD 2.0 training set
Eval data: SQuAD 2.0 dev set
Code:  See an example extractive QA pipeline built with Haystack
Infrastructure: 4x V100 GPU
Published: Dec 8th, 2021
Details
- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.
Hyperparameters
batch_size = 80
n_epochs = 4
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1.5
distillation_loss_weight = 0.75
Usage
In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
from haystack import Document
from haystack.components.readers import ExtractiveReader
docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]
reader = ExtractiveReader(model="deepset/roberta-base-squad2-distilled")
reader.warm_up()
question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/roberta-base-squad2-distilled"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Performance
"exact": 79.8366040596311
"f1": 83.916407079888
Authors
Timo M枚ller: timo.moeller@deepset.ai
Julian Risch: julian.risch@deepset.ai
Malte Pietsch: malte.pietsch@deepset.ai
Michel Bartels: michel.bartels@deepset.ai    
About us
 
      
     deepset is the company behind the production-ready open-source AI framework Haystack.
Some of our other work:
- Distilled roberta-base-squad2 (aka "tinyroberta-squad2")
- German BERT, GermanQuAD and GermanDPR, German embedding model
- deepset Cloud, deepset Studio
Get in touch and join the Haystack community
For more info on Haystack, visit our GitHub repo and Documentation.
We also have a Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube
By the way: we're hiring!

