File size: 8,518 Bytes
52abadf fd6ab1f 52abadf fd6ab1f 52abadf fd6ab1f 52abadf fd6ab1f 52abadf fd6ab1f 52abadf fd6ab1f 52abadf fd6ab1f 52abadf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from diffusers.modular_pipelines import (
ModularPipelineBlocks,
ComponentSpec,
PipelineState,
ModularPipeline,
OutputParam,
InputParam,
)
from diffusers.modular_pipelines.wan.before_denoise import retrieve_timesteps
from typing import Optional, List, Union, Tuple
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import randn_tensor
import torch
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
# One needs Wan anyway to run ChronoEdit (`AutoencoderKLWan`).
from diffusers.pipelines.wan.pipeline_wan_i2v import retrieve_latents
class ChronoEditSetTimestepsStep(ModularPipelineBlocks):
model_name = "chronoedit"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("scheduler", UniPCMultistepScheduler)]
@property
def inputs(self) -> List[InputParam]:
return [InputParam("num_inference_steps", default=50), InputParam("timesteps"), InputParam("sigmas")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam("timesteps", type_hint=torch.Tensor, description="The timesteps to use for inference"),
OutputParam(
"num_inference_steps",
type_hint=int,
description="The number of denoising steps to perform at inference time",
),
]
@torch.no_grad()
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.device = components._execution_device
block_state.timesteps, block_state.num_inference_steps = retrieve_timesteps(
components.scheduler,
block_state.num_inference_steps,
block_state.device,
block_state.timesteps,
block_state.sigmas,
)
self.set_block_state(state, block_state)
return components, state
class ChronoEditPrepareLatentStep(ModularPipelineBlocks):
model_name = "chronoedit"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("vae", AutoencoderKLWan)]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("processed_image", type_hint=PipelineImageInput),
InputParam("image_embeds", type_hint=torch.Tensor),
InputParam("height", type_hint=int, default=480),
InputParam("width", type_hint=int, default=832),
InputParam("num_frames", type_hint=int, default=81),
InputParam("batch_size"),
InputParam("num_videos_per_prompt", type_hint=int, default=1),
InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("generator"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"latents",
type_hint=torch.Tensor,
description="The initial latents to use for the denoising process.",
),
OutputParam(
"condition",
type_hint=torch.Tensor,
description="Conditioning latents for the denoising process.",
),
]
@staticmethod
def check_inputs(height, width):
if height % 16 != 0 or width % 16 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
@staticmethod
def prepare_latents(
components,
image: PipelineImageInput,
batch_size: int,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
num_latent_frames = (num_frames - 1) // components.vae_scale_factor_temporal + 1
latent_height = height // components.vae_scale_factor_spatial
latent_width = width // components.vae_scale_factor_spatial
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
image = image.unsqueeze(2)
video_condition = torch.cat(
[image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
)
video_condition = video_condition.to(device=device, dtype=dtype)
latents_mean = (
torch.tensor(components.vae.config.latents_mean)
.view(1, components.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(
1, components.vae.config.z_dim, 1, 1, 1
).to(latents.device, latents.dtype)
if isinstance(generator, list):
latent_condition = [
retrieve_latents(components.vae.encode(video_condition), sample_mode="argmax") for _ in generator
]
latent_condition = torch.cat(latent_condition)
else:
latent_condition = retrieve_latents(components.vae.encode(video_condition), sample_mode="argmax")
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
latent_condition = (latent_condition - latents_mean) * latents_std
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(latent_condition.device)
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
@torch.no_grad()
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
self.check_inputs(block_state.height, block_state.width)
block_state.device = components._execution_device
block_state.num_channels_latents = components.num_channels_latents
batch_size = block_state.batch_size * block_state.num_videos_per_prompt
block_state.latents, block_state.condition = self.prepare_latents(
components,
block_state.processed_image,
batch_size,
block_state.num_channels_latents,
block_state.height,
block_state.width,
block_state.num_frames,
torch.bfloat16,
block_state.device,
block_state.generator,
block_state.latents,
)
self.set_block_state(state, block_state)
return components, state
|