|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
TODO: need to implement temporal reasoning: |
|
|
https://huggingface.co/spaces/nvidia/ChronoEdit/blob/main/chronoedit_diffusers/pipeline_chronoedit.py |
|
|
""" |
|
|
|
|
|
from diffusers.modular_pipelines import ( |
|
|
ModularPipelineBlocks, |
|
|
ComponentSpec, |
|
|
BlockState, |
|
|
PipelineState, |
|
|
ModularPipeline, |
|
|
InputParam, |
|
|
LoopSequentialPipelineBlocks, |
|
|
) |
|
|
from diffusers.configuration_utils import FrozenDict |
|
|
from diffusers.guiders import ClassifierFreeGuidance |
|
|
from typing import List |
|
|
from diffusers import AutoModel, UniPCMultistepScheduler |
|
|
import torch |
|
|
from diffusers.modular_pipelines.wan.denoise import WanLoopAfterDenoiser, WanDenoiseLoopWrapper |
|
|
|
|
|
|
|
|
class ChronoEditLoopBeforeDenoiser(ModularPipelineBlocks): |
|
|
model_name = "chronoedit" |
|
|
|
|
|
@property |
|
|
def inputs(self) -> List[InputParam]: |
|
|
return [ |
|
|
InputParam( |
|
|
"latents", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.", |
|
|
), |
|
|
InputParam( |
|
|
"condition", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="The conditioning latents to use for the denoising process. Can be generated in prepare_latent step.", |
|
|
), |
|
|
] |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor): |
|
|
latent_model_input = torch.cat([block_state.latents, block_state.condition], dim=1) |
|
|
block_state.latent_model_input = latent_model_input.to(block_state.latents.dtype) |
|
|
block_state.timestep = t.expand(block_state.latents.shape[0]) |
|
|
return components, block_state |
|
|
|
|
|
|
|
|
class ChronoEditLoopDenoiser(ModularPipelineBlocks): |
|
|
model_name = "chronoedit" |
|
|
|
|
|
@property |
|
|
def expected_components(self) -> List[ComponentSpec]: |
|
|
return [ |
|
|
ComponentSpec( |
|
|
"guider", |
|
|
ClassifierFreeGuidance, |
|
|
config=FrozenDict({"guidance_scale": 1.0}), |
|
|
default_creation_method="from_config", |
|
|
), |
|
|
ComponentSpec("transformer", AutoModel), |
|
|
] |
|
|
|
|
|
@property |
|
|
def inputs(self) -> List[InputParam]: |
|
|
return [ |
|
|
InputParam("attention_kwargs"), |
|
|
InputParam( |
|
|
"latents", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.", |
|
|
), |
|
|
InputParam( |
|
|
"condition", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="The conditioning latents to use for the denoising process. Can be generated in prepare_latent step.", |
|
|
), |
|
|
InputParam( |
|
|
"image_embeds", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="The conditioning image embeddings to use for the denoising process. Can be generated in prepare_latent step.", |
|
|
), |
|
|
InputParam( |
|
|
"num_inference_steps", |
|
|
required=True, |
|
|
type_hint=int, |
|
|
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.", |
|
|
), |
|
|
InputParam( |
|
|
kwargs_type="denoiser_input_fields", |
|
|
description=( |
|
|
"All conditional model inputs that need to be prepared with guider. " |
|
|
"It should contain prompt_embeds/negative_prompt_embeds. " |
|
|
"Please add `kwargs_type=denoiser_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state" |
|
|
), |
|
|
), |
|
|
] |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor) -> PipelineState: |
|
|
|
|
|
|
|
|
guider_inputs = { |
|
|
"prompt_embeds": ( |
|
|
getattr(block_state, "prompt_embeds", None), |
|
|
getattr(block_state, "negative_prompt_embeds", None), |
|
|
), |
|
|
} |
|
|
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t) |
|
|
|
|
|
guider_state = components.guider.prepare_inputs(guider_inputs) |
|
|
|
|
|
|
|
|
for guider_state_batch in guider_state: |
|
|
components.guider.prepare_models(components.transformer) |
|
|
cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()} |
|
|
prompt_embeds = cond_kwargs.pop("prompt_embeds") |
|
|
|
|
|
|
|
|
|
|
|
guider_state_batch.noise_pred = components.transformer( |
|
|
hidden_states=block_state.latent_model_input, |
|
|
timestep=block_state.timestep, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
encoder_hidden_states_image=block_state.image_embeds, |
|
|
attention_kwargs=block_state.attention_kwargs, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
components.guider.cleanup_models(components.transformer) |
|
|
|
|
|
|
|
|
block_state.noise_pred = components.guider(guider_state)[0] |
|
|
|
|
|
return components, block_state |
|
|
|
|
|
|
|
|
class ChronoEditDenoiseLoopWrapper(LoopSequentialPipelineBlocks): |
|
|
model_name = "chronoedit" |
|
|
|
|
|
@property |
|
|
def loop_expected_components(self) -> List[ComponentSpec]: |
|
|
return [ |
|
|
ComponentSpec( |
|
|
"guider", |
|
|
ClassifierFreeGuidance, |
|
|
config=FrozenDict({"guidance_scale": 1.0}), |
|
|
default_creation_method="from_config", |
|
|
), |
|
|
ComponentSpec("scheduler", UniPCMultistepScheduler), |
|
|
ComponentSpec("transformer", AutoModel), |
|
|
] |
|
|
|
|
|
@property |
|
|
def loop_inputs(self) -> List[InputParam]: |
|
|
return [ |
|
|
InputParam( |
|
|
"timesteps", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.", |
|
|
), |
|
|
InputParam( |
|
|
"num_inference_steps", |
|
|
required=True, |
|
|
type_hint=int, |
|
|
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.", |
|
|
), |
|
|
] |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState: |
|
|
block_state = self.get_block_state(state) |
|
|
|
|
|
block_state.num_warmup_steps = max( |
|
|
len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0 |
|
|
) |
|
|
|
|
|
with self.progress_bar(total=block_state.num_inference_steps) as progress_bar: |
|
|
for i, t in enumerate(block_state.timesteps): |
|
|
components, block_state = self.loop_step(components, block_state, i=i, t=t) |
|
|
if i == len(block_state.timesteps) - 1 or ( |
|
|
(i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0 |
|
|
): |
|
|
progress_bar.update() |
|
|
|
|
|
self.set_block_state(state, block_state) |
|
|
|
|
|
return components, state |
|
|
|
|
|
|
|
|
class ChronoEditLoopAfterDenoiser(WanLoopAfterDenoiser): |
|
|
model_name = "chronoedit" |
|
|
|
|
|
|
|
|
class ChronoEditDenoiseStep(ChronoEditDenoiseLoopWrapper): |
|
|
block_classes = [ChronoEditLoopBeforeDenoiser, ChronoEditLoopDenoiser, ChronoEditLoopAfterDenoiser] |
|
|
block_names = ["before_denoiser", "denoiser", "after_denoiser"] |
|
|
|