|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam, ModularPipeline, PipelineState |
|
|
import numpy as np |
|
|
import torch |
|
|
import PIL |
|
|
from typing import List |
|
|
from diffusers.modular_pipelines.wan.before_denoise import WanInputStep |
|
|
|
|
|
|
|
|
def calculate_dimensions(image, mod_value): |
|
|
""" |
|
|
Calculate output dimensions based on resolution settings. |
|
|
|
|
|
Args: |
|
|
image: PIL Image |
|
|
mod_value: Modulo value for dimension alignment |
|
|
|
|
|
Returns: |
|
|
Tuple of (width, height) |
|
|
""" |
|
|
|
|
|
|
|
|
target_area = 720 * 1280 |
|
|
|
|
|
|
|
|
aspect_ratio = image.height / image.width |
|
|
calculated_height = round(np.sqrt(target_area * aspect_ratio)) // mod_value * mod_value |
|
|
calculated_width = round(np.sqrt(target_area / aspect_ratio)) // mod_value * mod_value |
|
|
|
|
|
return calculated_width, calculated_height |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ChronoEditInputStep(WanInputStep): |
|
|
model_name = "chronoedit" |
|
|
|
|
|
@property |
|
|
def inputs(self) -> List[InputParam]: |
|
|
return [ |
|
|
InputParam("num_videos_per_prompt", default=1), |
|
|
InputParam( |
|
|
"prompt_embeds", |
|
|
required=True, |
|
|
type_hint=torch.Tensor, |
|
|
description="Pre-generated text embeddings. Can be generated from text_encoder step.", |
|
|
), |
|
|
InputParam( |
|
|
"negative_prompt_embeds", |
|
|
type_hint=torch.Tensor, |
|
|
description="Pre-generated negative text embeddings. Can be generated from text_encoder step.", |
|
|
), |
|
|
] |
|
|
|
|
|
|
|
|
class ChronoEditImageInputStep(ModularPipelineBlocks): |
|
|
model_name = "chronoedit" |
|
|
|
|
|
@property |
|
|
def inputs(self) -> List[InputParam]: |
|
|
return [InputParam(name="image")] |
|
|
|
|
|
@property |
|
|
def intermediate_outputs(self) -> List[OutputParam]: |
|
|
return [ |
|
|
OutputParam(name="image", type_hint=PIL.Image.Image), |
|
|
OutputParam(name="height", type_hint=int, description="The height set w.r.t input image and specs"), |
|
|
OutputParam(name="width", type_hint=int, description="The width set w.r.t input image and specs"), |
|
|
] |
|
|
|
|
|
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState: |
|
|
block_state = self.get_block_state(state) |
|
|
image = block_state.image |
|
|
mod_value = components.vae_scale_factor_spatial * components.transformer.config.patch_size[1] |
|
|
|
|
|
width, height = calculate_dimensions(image, mod_value) |
|
|
block_state.image = image.resize((width, height)) |
|
|
block_state.height = height |
|
|
block_state.width = width |
|
|
|
|
|
self.set_block_state(state, block_state) |
|
|
return components, state |
|
|
|