chronoedit-modular / inputs.py
sayakpaul's picture
sayakpaul HF Staff
Upload folder using huggingface_hub
fd6ab1f verified
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam, ModularPipeline, PipelineState
import numpy as np
import torch
import PIL
from typing import List
from diffusers.modular_pipelines.wan.before_denoise import WanInputStep
def calculate_dimensions(image, mod_value):
"""
Calculate output dimensions based on resolution settings.
Args:
image: PIL Image
mod_value: Modulo value for dimension alignment
Returns:
Tuple of (width, height)
"""
# Get max area from preset or override
target_area = 720 * 1280
# Calculate dimensions maintaining aspect ratio
aspect_ratio = image.height / image.width
calculated_height = round(np.sqrt(target_area * aspect_ratio)) // mod_value * mod_value
calculated_width = round(np.sqrt(target_area / aspect_ratio)) // mod_value * mod_value
return calculated_width, calculated_height
# Make the input step aware of `negative_prompt_embeds`.
# ChronoEdit uses a `guidance_scale` of 1.
class ChronoEditInputStep(WanInputStep):
model_name = "chronoedit"
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("num_videos_per_prompt", default=1),
InputParam(
"prompt_embeds",
required=True,
type_hint=torch.Tensor,
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
InputParam(
"negative_prompt_embeds",
type_hint=torch.Tensor,
description="Pre-generated negative text embeddings. Can be generated from text_encoder step.",
),
]
class ChronoEditImageInputStep(ModularPipelineBlocks):
model_name = "chronoedit"
@property
def inputs(self) -> List[InputParam]:
return [InputParam(name="image")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(name="image", type_hint=PIL.Image.Image),
OutputParam(name="height", type_hint=int, description="The height set w.r.t input image and specs"),
OutputParam(name="width", type_hint=int, description="The width set w.r.t input image and specs"),
]
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
image = block_state.image
mod_value = components.vae_scale_factor_spatial * components.transformer.config.patch_size[1]
width, height = calculate_dimensions(image, mod_value)
block_state.image = image.resize((width, height))
block_state.height = height
block_state.width = width
self.set_block_state(state, block_state)
return components, state