aha_sentence_classification

This model is a fine-tuned version of skt/A.X-Encoder-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8454
  • Accuracy: 0.6900
  • F1 Micro: 0.6900
  • F1 Macro: 0.6503
  • Precision Macro: 0.6078
  • Recall Macro: 0.7221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Micro F1 Macro Precision Macro Recall Macro
0.9702 0.5949 1000 1.1520 0.5590 0.5590 0.5444 0.5142 0.6791
0.7293 1.1898 2000 1.0469 0.5992 0.5992 0.5966 0.5599 0.7238
0.7779 1.7847 3000 0.9977 0.6278 0.6278 0.5964 0.5646 0.7274
0.5545 2.3795 4000 0.9847 0.6290 0.6290 0.6208 0.5849 0.7236
0.5692 2.9744 5000 0.8454 0.6900 0.6900 0.6503 0.6078 0.7221
0.3962 3.5693 6000 1.0074 0.6488 0.6488 0.6316 0.6093 0.7081
0.1624 4.1642 7000 1.1059 0.6732 0.6732 0.6533 0.6322 0.6930
0.1816 4.7591 8000 1.1277 0.6872 0.6872 0.6513 0.6429 0.6690
0.0934 5.3540 9000 1.4084 0.6882 0.6882 0.6468 0.6380 0.6649
0.0882 5.9488 10000 1.4941 0.6918 0.6918 0.6450 0.6428 0.6606

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.7.0+cu126
  • Tokenizers 0.22.0
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for djsull/aha_sentence_classification

Finetuned
(3)
this model