YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
InternVideo ECVA tuned head
- Base backbone:
revliter/internvideo_next_large_p14_res224_f16 - Clip length:
16frames - Frame size:
224x224 - Head hidden dims:
[512] - Repo:
happy8825/internvideo_tuned
Quick start (single video)
pip install decord transformers huggingface_hub
python inference_example.py --repo_id happy8825/internvideo_tuned --video /path/to/video.mp4 --device cuda
The script downloads this repo, loads the InternVideo backbone + tuned head, and prints normal or abnormal.
Minimal Python snippet
import json, os, numpy as np, torch
from huggingface_hub import snapshot_download
from transformers import VideoMAEImageProcessor, AutoModel
from decord import VideoReader
ID2LABEL = {0: "normal", 1: "abnormal"}
class ClassificationHead(torch.nn.Module):
def __init__(self, in_dim, hidden_dims, num_labels=2, dropout=0.1):
super().__init__()
dims = [in_dim] + list(hidden_dims)
layers = []
for i in range(len(dims) - 1):
layers += [torch.nn.Linear(dims[i], dims[i+1]), torch.nn.GELU(), torch.nn.Dropout(dropout)]
layers.append(torch.nn.Linear(dims[-1], num_labels))
self.net = torch.nn.Sequential(*layers)
def forward(self, x): return self.net(x)
def pool_tokens(feats, expected=None):
if feats.dim() != 3: return feats
_, d1, d2 = feats.shape
if expected:
if d1 == expected: return feats.mean(dim=2)
if d2 == expected: return feats.mean(dim=1)
return feats.mean(dim=2 if d1 <= d2 else 1)
repo = "happy8825/internvideo_tuned"
local = snapshot_download(repo)
cfg = json.load(open(os.path.join(local, "train_config.json")))
base = cfg.get("base_model", "revliter/internvideo_next_large_p14_res224_f16")
clip_len = int(cfg.get("clip_len", 16))
hidden = cfg.get("hidden", [512])
feat_dim = cfg.get("feature_dim") or cfg.get("hidden_size")
processor = VideoMAEImageProcessor.from_pretrained(base)
backbone = AutoModel.from_pretrained(base, trust_remote_code=True).eval().to("cuda")
head = ClassificationHead(in_dim=feat_dim or backbone.config.hidden_size, hidden_dims=hidden)
state = torch.load(os.path.join(local, "best_head.pt"), map_location="cpu")
head.load_state_dict(state["head"]); head.eval().to("cuda")
vr = VideoReader("/path/to/video.mp4")
idxs = np.linspace(0, len(vr)-1, num=clip_len, dtype=int)
frames = [vr[i].asnumpy() for i in idxs]
px = processor(frames, return_tensors="pt")["pixel_values"].permute(0,2,1,3,4).to("cuda")
with torch.no_grad(), torch.amp.autocast("cuda", dtype=torch.bfloat16):
feats = backbone.extract_features(pixel_values=px)
pooled = pool_tokens(feats, expected=feat_dim)
pred = int(head(pooled.float()).argmax(dim=-1).item())
print(ID2LABEL.get(pred, pred))
Files
best_head.pt: classifier head weightstrain_config.json: training config (contains base model, clip_len, frame_size, hidden dims, etc.)inference_example.py: minimal inference helper
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support