Update README.md
Browse files
README.md
CHANGED
|
@@ -62,32 +62,13 @@ This release prioritizes **practical code generation quality** over benchmark sc
|
|
| 62 |
|
| 63 |
## Quickstart
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
```python
|
| 68 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 69 |
-
import torch
|
| 70 |
-
|
| 71 |
-
repo = "hokar3361/gpt-oss-coderjs-v0.1"
|
| 72 |
-
tok = AutoTokenizer.from_pretrained(repo, use_fast=True)
|
| 73 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 74 |
-
repo,
|
| 75 |
-
torch_dtype=torch.bfloat16,
|
| 76 |
-
device_map="auto"
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
prompt = "```js\n// Write a function that flattens a nested array of numbers\n"
|
| 80 |
-
inputs = tok(prompt, return_tensors="pt").to(model.device)
|
| 81 |
-
out = model.generate(**inputs, max_new_tokens=128, temperature=0.3, do_sample=False)
|
| 82 |
-
print(tok.decode(out[0], skip_special_tokens=True))
|
| 83 |
-
2) vLLM (recommended)
|
| 84 |
-
bash
|
| 85 |
-
コードをコピーする
|
| 86 |
vllm serve hokar3361/gpt-oss-coderjs-v0.1 \
|
| 87 |
--async-scheduling \
|
| 88 |
--max-model-len 4096 \
|
| 89 |
--gpu-memory-utilization 0.90
|
| 90 |
For LoRA-only repos, add --lora-modules as per vLLM documentation.
|
|
|
|
| 91 |
|
| 92 |
For merged weights, the above command is sufficient.
|
| 93 |
|
|
|
|
| 62 |
|
| 63 |
## Quickstart
|
| 64 |
|
| 65 |
+
```bash
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
vllm serve hokar3361/gpt-oss-coderjs-v0.1 \
|
| 67 |
--async-scheduling \
|
| 68 |
--max-model-len 4096 \
|
| 69 |
--gpu-memory-utilization 0.90
|
| 70 |
For LoRA-only repos, add --lora-modules as per vLLM documentation.
|
| 71 |
+
```
|
| 72 |
|
| 73 |
For merged weights, the above command is sufficient.
|
| 74 |
|