|
|
"""LLaDA MoE model pytorch implementation""" |
|
|
|
|
|
import math |
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_outputs import ( |
|
|
MoeCausalLMOutputWithPast, |
|
|
MoeModelOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
|
from transformers.utils import ( |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
is_flash_attn_2_available, |
|
|
is_flash_attn_greater_or_equal_2_10, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
|
|
|
from .configuration_lladamoe import LLaDAConfig |
|
|
|
|
|
|
|
|
if is_flash_attn_2_available(): |
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "LLaDAConfig" |
|
|
|
|
|
|
|
|
|
|
|
def load_balancing_loss_func( |
|
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None |
|
|
) -> float: |
|
|
r""" |
|
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
|
experts is too unbalanced. |
|
|
|
|
|
Args: |
|
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
|
shape [batch_size X sequence_length, num_experts]. |
|
|
attention_mask (`torch.Tensor`, *optional*): |
|
|
For diffusion language model, attention_mask is set to None by default. |
|
|
If you pass an attention mask and expect the model to use it for computing other attention mechanisms, |
|
|
it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. |
|
|
num_experts (`int`, *optional*): |
|
|
Number of experts |
|
|
|
|
|
Returns: |
|
|
The auxiliary loss. |
|
|
""" |
|
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
|
return 0 |
|
|
|
|
|
if isinstance(gate_logits, tuple): |
|
|
compute_device = gate_logits[0].device |
|
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
|
|
if attention_mask is None: |
|
|
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
|
else: |
|
|
batch_size, sequence_length = attention_mask.shape |
|
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
|
|
|
expert_attention_mask = ( |
|
|
attention_mask[None, :, :, None, None] |
|
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) |
|
|
.reshape(-1, top_k, num_experts) |
|
|
.to(compute_device) |
|
|
) |
|
|
|
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
|
expert_attention_mask, dim=0 |
|
|
) |
|
|
|
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
|
attention_mask[None, :, :, None] |
|
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
|
.reshape(-1, num_experts) |
|
|
.to(compute_device) |
|
|
) |
|
|
|
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
|
router_per_expert_attention_mask, dim=0 |
|
|
) |
|
|
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) |
|
|
return overall_loss * num_experts |
|
|
|
|
|
|
|
|
class LLaDAMoERMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-5): |
|
|
""" |
|
|
LLaDAMoERMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(LLaDAMoERMSNorm) |
|
|
|
|
|
|
|
|
class LLaDAMoERotaryEmbedding(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim=None, |
|
|
max_position_embeddings=2048, |
|
|
base=10000, |
|
|
device=None, |
|
|
scaling_factor=1.0, |
|
|
rope_type="default", |
|
|
config: Optional[LLaDAConfig] = None, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.rope_kwargs = {} |
|
|
if config is None: |
|
|
logger.warning_once( |
|
|
"`LLaDAMoERotaryEmbedding` can now be fully parameterized by passing the model config through the " |
|
|
"`config` argument. All other arguments will be removed in v4.46" |
|
|
) |
|
|
self.rope_kwargs = { |
|
|
"rope_type": rope_type, |
|
|
"factor": scaling_factor, |
|
|
"dim": dim, |
|
|
"base": base, |
|
|
"max_position_embeddings": max_position_embeddings, |
|
|
} |
|
|
self.rope_type = rope_type |
|
|
self.max_seq_len_cached = max_position_embeddings |
|
|
self.original_max_seq_len = max_position_embeddings |
|
|
else: |
|
|
|
|
|
if config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
|
""" |
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
|
1 - growing beyond the cached sequence length (allow scaling) |
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
|
""" |
|
|
seq_len = torch.max(position_ids) + 1 |
|
|
if seq_len > self.max_seq_len_cached: |
|
|
inv_freq, self.attention_scaling = self.rope_init_fn( |
|
|
self.config, device, seq_len=seq_len, **self.rope_kwargs |
|
|
) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = seq_len |
|
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids): |
|
|
if "dynamic" in self.rope_type: |
|
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
|
|
|
|
|
|
cos = cos * self.attention_scaling |
|
|
sin = sin * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
rotary_dim = cos.shape[-1] |
|
|
|
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
|
|
q_rot = q[..., :rotary_dim] |
|
|
q_pass = q[..., rotary_dim:] |
|
|
|
|
|
k_rot = k[..., :rotary_dim] |
|
|
k_pass = k[..., rotary_dim:] |
|
|
|
|
|
q_rotated = (q_rot * cos) + (rotate_half(q_rot) * sin) |
|
|
k_rotated = (k_rot * cos) + (rotate_half(k_rot) * sin) |
|
|
|
|
|
q_final = torch.cat((q_rotated, q_pass), dim=-1) |
|
|
k_final = torch.cat((k_rotated, k_pass), dim=-1) |
|
|
|
|
|
return q_final, k_final |
|
|
|
|
|
|
|
|
|
|
|
class LLaDAMoEMLP(nn.Module): |
|
|
def __init__(self, config, mlp_type): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
if mlp_type == 'dense': |
|
|
self.intermediate_size = config.dense_intermediate_size |
|
|
elif mlp_type == 'expert': |
|
|
self.intermediate_size = config.expert_intermediate_size |
|
|
elif mlp_type == 'shared_expert': |
|
|
self.intermediate_size = config.shared_expert_intermediate_size |
|
|
else: |
|
|
assert False, "unknown mlp type" |
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
|
|
|
class LLaDAMoEAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: LLaDAConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
if layer_idx is None: |
|
|
logger.warning_once( |
|
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
|
"when creating this class." |
|
|
) |
|
|
|
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
|
|
|
|
|
|
self.is_causal = False |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
|
raise ValueError( |
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
|
f" and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) |
|
|
if config.qk_layernorm: |
|
|
self.q_norm = LLaDAMoERMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = LLaDAMoERMSNorm( |
|
|
self.head_dim, eps=config.rms_norm_eps |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
if 'q_norm' in dir(self): |
|
|
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) |
|
|
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
if self.config.clip_qkv is not None: |
|
|
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
|
|
|
attention_mask = None |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
|
raise ValueError( |
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
|
f" {attn_output.size()}" |
|
|
) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
|
|
class LLaDAMoEFlashAttention2(LLaDAMoEAttention): |
|
|
""" |
|
|
LLaDAMoE flash attention module. This module inherits from `LLaDAMoEAttention` as the weights of the module stays |
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
|
""" |
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
output_attentions = False |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
if 'q_norm' in dir(self): |
|
|
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) |
|
|
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
if self.config.clip_qkv is not None: |
|
|
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
|
if input_dtype == torch.float32: |
|
|
if torch.is_autocast_enabled(): |
|
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
|
target_dtype = self.config._pre_quantization_dtype |
|
|
else: |
|
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
|
|
logger.warning_once( |
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
|
f" {target_dtype}." |
|
|
) |
|
|
|
|
|
query_states = query_states.to(target_dtype) |
|
|
key_states = key_states.to(target_dtype) |
|
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
|
|
|
attention_mask = None |
|
|
self.is_causal = False |
|
|
|
|
|
attn_output = _flash_attention_forward( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
q_len, |
|
|
dropout=dropout_rate, |
|
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
|
is_causal=self.is_causal, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
|
|
class LLaDAMoESdpaAttention(LLaDAMoEAttention): |
|
|
""" |
|
|
LLaDAMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
|
`LLaDAMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
|
SDPA API. |
|
|
""" |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
if output_attentions: |
|
|
logger.warning_once( |
|
|
"LLaDAModel is using LLaDAMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
|
) |
|
|
return super().forward( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
if 'q_norm' in dir(self): |
|
|
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) |
|
|
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
if self.config.clip_qkv is not None: |
|
|
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
causal_mask = attention_mask |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: |
|
|
query_states = query_states.contiguous() |
|
|
key_states = key_states.contiguous() |
|
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
|
|
|
|
|
is_causal = False |
|
|
causal_mask = None |
|
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attn_mask=causal_mask, |
|
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
is_causal=is_causal, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
|
|
|
LLADAMOE_ATTENTION_CLASSES = { |
|
|
"eager": LLaDAMoEAttention, |
|
|
"flash_attention_2": LLaDAMoEFlashAttention2, |
|
|
"sdpa": LLaDAMoESdpaAttention, |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
class LLaDAMoESparseMoeBlock(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.num_experts = config.num_experts |
|
|
self.top_k = config.num_experts_per_tok |
|
|
self.norm_topk_prob = False |
|
|
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False) |
|
|
self.experts = nn.ModuleList([LLaDAMoEMLP(config, 'expert') for _ in range(self.num_experts)]) |
|
|
self.score_func = config.moe_router_score_function |
|
|
if config.moe_router_enable_expert_bias: |
|
|
self.register_buffer("expert_bias", torch.zeros(self.num_experts)) |
|
|
else: |
|
|
self.expert_bias = None |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
|
|
|
|
if self.expert_bias is not None: |
|
|
routing_weights += self.expert_bias |
|
|
|
|
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
|
if self.norm_topk_prob: |
|
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
|
|
final_hidden_states = torch.zeros( |
|
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
|
expert_layer = self.experts[expert_idx] |
|
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
|
|
|
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
|
return final_hidden_states |
|
|
|
|
|
|
|
|
class LLaDAMoEDecoderLayer(nn.Module): |
|
|
def __init__(self, config: LLaDAConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.mlp_type = 'dense' if config.moe_layer_freq[layer_idx] == 0 else 'moe' |
|
|
|
|
|
self.self_attn = LLADAMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = LLaDAMoESparseMoeBlock(config) if self.mlp_type == 'moe' else LLaDAMoEMLP(config, 'dense') |
|
|
self.input_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
if config.shared_expert_intermediate_size is not None and self.mlp_type == 'moe': |
|
|
self.shared_expert = LLaDAMoEMLP(config, 'shared_expert') |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
output_router_logits: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
|
For diffusion language model, attention_mask is set to None(full attention). |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
|
returned tensors for more detail. |
|
|
output_router_logits (`bool`, *optional*): |
|
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, |
|
|
and should not be returned during inference. |
|
|
use_cache (`bool`, *optional*): |
|
|
For diffusion language model, use_cache is set to False by default. |
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): |
|
|
For diffusion language model, past_key_value is set to None by default. |
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
|
For diffusion language model, cache_position is set to None by default. |
|
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
|
with `head_dim` being the embedding dimension of each attention head. |
|
|
kwargs (`dict`, *optional*): |
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
|
into the model |
|
|
""" |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
use_cache = False |
|
|
attention_mask = None |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
shared_expert_states = hidden_states |
|
|
|
|
|
hidden_states = self.mlp(hidden_states) |
|
|
|
|
|
if hasattr(self, "shared_expert"): |
|
|
hidden_states = hidden_states + self.shared_expert(shared_expert_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
LLADAMOE_START_DOCSTRING = r""" |
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
|
etc.) |
|
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
|
and behavior. |
|
|
|
|
|
Parameters: |
|
|
config ([`LLaDAConfig`]): |
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
|
load the weights associated with the model, only the configuration. Check out the |
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.", |
|
|
LLADAMOE_START_DOCSTRING, |
|
|
) |
|
|
|
|
|
class LLaDAMoEPreTrainedModel(PreTrainedModel): |
|
|
config_class = LLaDAConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["LLaDAMoEDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
LLADAMOE_INPUTS_DOCSTRING = r""" |
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
|
it. |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. |
|
|
**For diffusion language model, attention_mask is set to None(full attention) by default.** |
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
|
config.n_positions - 1]`. |
|
|
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
|
**For diffusion language model, past_key_values can not be applied by default.** |
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
|
model's internal embedding lookup matrix. |
|
|
use_cache (`bool`, *optional*): |
|
|
For diffusion languagem model, the use_cache and past_key_values can not be enabled for default setting. |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
|
tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
|
more detail. |
|
|
output_router_logits (`bool`, *optional*): |
|
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
|
should not be returned during inference. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
|
**For diffusion language model, cache_position can not be applied by default.** |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.", |
|
|
LLADAMOE_START_DOCSTRING, |
|
|
) |
|
|
|
|
|
class LLaDAMoEModel(LLaDAMoEPreTrainedModel): |
|
|
""" |
|
|
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDAMoEDecoderLayer`] |
|
|
|
|
|
Args: |
|
|
config: LLaDAConfig |
|
|
""" |
|
|
|
|
|
def __init__(self, config: LLaDAConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[LLaDAMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = LLaDAMoERotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
|
assert (not use_cache and past_key_values is None and cache_position is None), "The cache mechanism is not suppotred for LLaDA MoE by default." |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_router_logits = ( |
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError( |
|
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
|
) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
return_legacy_cache = False |
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
causal_mask = None |
|
|
logger.warning_once( |
|
|
f"Please note that, unlike autoregressive models, LLaDA MoE employs a bidirectional attention mechanism. " |
|
|
f"In the forward code in modeling_lladamoe.py, we set both attention_mask and causal_mask to None, " |
|
|
f"which affects the default causal attention and causes the input attention_mask parameter to become ineffective. " |
|
|
f"If you pass an attention mask and expect the model to use it for computing other attention mechanisms, " |
|
|
f"it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. " |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
all_router_logits = () if output_router_logits else None |
|
|
next_decoder_cache = None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
causal_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
output_router_logits, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
output_router_logits=output_router_logits, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if output_router_logits and layer_outputs[-1] is not None: |
|
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
if return_legacy_cache: |
|
|
next_cache = next_cache.to_legacy_cache() |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
return MoeModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
router_logits=all_router_logits, |
|
|
) |
|
|
|
|
|
|
|
|
class LLaDAMoEModelLM(LLaDAMoEPreTrainedModel): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = LLaDAMoEModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
|
self.num_experts = config.num_experts |
|
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING) |
|
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
num_logits_to_keep: int = 0, |
|
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
r""" |
|
|
For the current inference code of the diffusion language model, passing the parameters `labels` and `num_logits_to_keep` to compute loss is not supported. |
|
|
Please note that for the diffusion language model, you cannot use model.generate() to generate responses. Please use the provided sampling code to generate model outputs. |
|
|
|
|
|
Returns: |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
>>> model = AutoModel.from_pretrained("path/to/LLaDAMoE") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("path/to/LLaDAMoE") |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = generate() # Please use the customized generate method instead of model.generate(). |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m' |
|
|
``` |
|
|
""" |
|
|
assert (labels is None and num_logits_to_keep == 0), "LLaDAMoE model does not support calculate loss in the forward pass." |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_router_logits = ( |
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
output_router_logits=output_router_logits, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) |
|
|
|
|
|
loss = None |
|
|
|
|
|
aux_loss = None |
|
|
if output_router_logits: |
|
|
aux_loss = load_balancing_loss_func( |
|
|
outputs.router_logits if return_dict else outputs[-1], |
|
|
self.num_experts, |
|
|
self.num_experts_per_tok, |
|
|
attention_mask, |
|
|
) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
if output_router_logits: |
|
|
output = (aux_loss,) + output |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return MoeCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
aux_loss=aux_loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
router_logits=outputs.router_logits, |
|
|
) |
|
|
|