|  | """LLaDA MoE model pytorch implementation""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache, StaticCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import AttentionMaskConverter | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | MoeCausalLMOutputWithPast, | 
					
						
						|  | MoeModelOutputWithPast, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from .configuration_lladamoe import LLaDAConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from transformers.modeling_flash_attention_utils import _flash_attention_forward | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "LLaDAConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_balancing_loss_func( | 
					
						
						|  | gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None | 
					
						
						|  | ) -> float: | 
					
						
						|  | r""" | 
					
						
						|  | Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | 
					
						
						|  |  | 
					
						
						|  | See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | 
					
						
						|  | function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | 
					
						
						|  | experts is too unbalanced. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | 
					
						
						|  | Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | 
					
						
						|  | shape [batch_size X sequence_length, num_experts]. | 
					
						
						|  | attention_mask (`torch.Tensor`, *optional*): | 
					
						
						|  | For diffusion language model, attention_mask is set to None by default. | 
					
						
						|  | If you pass an attention mask and expect the model to use it for computing other attention mechanisms, | 
					
						
						|  | it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. | 
					
						
						|  | num_experts (`int`, *optional*): | 
					
						
						|  | Number of experts | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | The auxiliary loss. | 
					
						
						|  | """ | 
					
						
						|  | if gate_logits is None or not isinstance(gate_logits, tuple): | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | if isinstance(gate_logits, tuple): | 
					
						
						|  | compute_device = gate_logits[0].device | 
					
						
						|  | concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  |  | 
					
						
						|  | tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_prob_per_expert = torch.mean(routing_weights, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | batch_size, sequence_length = attention_mask.shape | 
					
						
						|  | num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expert_attention_mask = ( | 
					
						
						|  | attention_mask[None, :, :, None, None] | 
					
						
						|  | .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | 
					
						
						|  | .reshape(-1, top_k, num_experts) | 
					
						
						|  | .to(compute_device) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | 
					
						
						|  | expert_attention_mask, dim=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_per_expert_attention_mask = ( | 
					
						
						|  | attention_mask[None, :, :, None] | 
					
						
						|  | .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | 
					
						
						|  | .reshape(-1, num_experts) | 
					
						
						|  | .to(compute_device) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | 
					
						
						|  | router_per_expert_attention_mask, dim=0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | 
					
						
						|  | return overall_loss * num_experts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoERMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-5): | 
					
						
						|  | """ | 
					
						
						|  | LLaDAMoERMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  | def extra_repr(self): | 
					
						
						|  | return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(LLaDAMoERMSNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoERotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim=None, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | rope_type="default", | 
					
						
						|  | config: Optional[LLaDAConfig] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.rope_kwargs = {} | 
					
						
						|  | if config is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`LLaDAMoERotaryEmbedding` can now be fully parameterized by passing the model config through the " | 
					
						
						|  | "`config` argument. All other arguments will be removed in v4.46" | 
					
						
						|  | ) | 
					
						
						|  | self.rope_kwargs = { | 
					
						
						|  | "rope_type": rope_type, | 
					
						
						|  | "factor": scaling_factor, | 
					
						
						|  | "dim": dim, | 
					
						
						|  | "base": base, | 
					
						
						|  | "max_position_embeddings": max_position_embeddings, | 
					
						
						|  | } | 
					
						
						|  | self.rope_type = rope_type | 
					
						
						|  | self.max_seq_len_cached = max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = max_position_embeddings | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if config.rope_scaling is not None: | 
					
						
						|  | self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | 
					
						
						|  | else: | 
					
						
						|  | self.rope_type = "default" | 
					
						
						|  | self.max_seq_len_cached = config.max_position_embeddings | 
					
						
						|  | self.original_max_seq_len = config.max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
						
						|  |  | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.original_inv_freq = self.inv_freq | 
					
						
						|  |  | 
					
						
						|  | def _dynamic_frequency_update(self, position_ids, device): | 
					
						
						|  | """ | 
					
						
						|  | dynamic RoPE layers should recompute `inv_freq` in the following situations: | 
					
						
						|  | 1 - growing beyond the cached sequence length (allow scaling) | 
					
						
						|  | 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) | 
					
						
						|  | """ | 
					
						
						|  | seq_len = torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | inv_freq, self.attention_scaling = self.rope_init_fn( | 
					
						
						|  | self.config, device, seq_len=seq_len, **self.rope_kwargs | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: | 
					
						
						|  | self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) | 
					
						
						|  | self.max_seq_len_cached = self.original_max_seq_len | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids): | 
					
						
						|  | if "dynamic" in self.rope_type: | 
					
						
						|  | self._dynamic_frequency_update(position_ids, device=x.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() | 
					
						
						|  | sin = emb.sin() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cos = cos * self.attention_scaling | 
					
						
						|  | sin = sin * self.attention_scaling | 
					
						
						|  |  | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | rotary_dim = cos.shape[-1] | 
					
						
						|  |  | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  |  | 
					
						
						|  | q_rot = q[..., :rotary_dim] | 
					
						
						|  | q_pass = q[..., rotary_dim:] | 
					
						
						|  |  | 
					
						
						|  | k_rot = k[..., :rotary_dim] | 
					
						
						|  | k_pass = k[..., rotary_dim:] | 
					
						
						|  |  | 
					
						
						|  | q_rotated = (q_rot * cos) + (rotate_half(q_rot) * sin) | 
					
						
						|  | k_rotated = (k_rot * cos) + (rotate_half(k_rot) * sin) | 
					
						
						|  |  | 
					
						
						|  | q_final = torch.cat((q_rotated, q_pass), dim=-1) | 
					
						
						|  | k_final = torch.cat((k_rotated, k_pass), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | return q_final, k_final | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEMLP(nn.Module): | 
					
						
						|  | def __init__(self, config, mlp_type): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | if mlp_type == 'dense': | 
					
						
						|  | self.intermediate_size = config.dense_intermediate_size | 
					
						
						|  | elif mlp_type == 'expert': | 
					
						
						|  | self.intermediate_size = config.expert_intermediate_size | 
					
						
						|  | elif mlp_type == 'shared_expert': | 
					
						
						|  | self.intermediate_size = config.shared_expert_intermediate_size | 
					
						
						|  | else: | 
					
						
						|  | assert False, "unknown mlp type" | 
					
						
						|  |  | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LLaDAConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.is_causal = False | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) | 
					
						
						|  | if config.qk_layernorm: | 
					
						
						|  | self.q_norm = LLaDAMoERMSNorm(self.head_dim, eps=config.rms_norm_eps) | 
					
						
						|  | self.k_norm = LLaDAMoERMSNorm( | 
					
						
						|  | self.head_dim, eps=config.rms_norm_eps | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | if 'q_norm' in dir(self): | 
					
						
						|  | query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) | 
					
						
						|  | key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if self.config.clip_qkv is not None: | 
					
						
						|  | query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  | key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  | value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  | attn_weights = attn_weights + causal_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEFlashAttention2(LLaDAMoEAttention): | 
					
						
						|  | """ | 
					
						
						|  | LLaDAMoE flash attention module. This module inherits from `LLaDAMoEAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | if 'q_norm' in dir(self): | 
					
						
						|  | query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) | 
					
						
						|  | key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  | if self.config.clip_qkv is not None: | 
					
						
						|  | query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  | key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  | value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | dropout_rate = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = None | 
					
						
						|  | self.is_causal = False | 
					
						
						|  |  | 
					
						
						|  | attn_output = _flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=dropout_rate, | 
					
						
						|  | use_top_left_mask=self._flash_attn_uses_top_left_mask, | 
					
						
						|  | is_causal=self.is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoESdpaAttention(LLaDAMoEAttention): | 
					
						
						|  | """ | 
					
						
						|  | LLaDAMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `LLaDAMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "LLaDAModel is using LLaDAMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | if 'q_norm' in dir(self): | 
					
						
						|  | query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) | 
					
						
						|  | key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if self.config.clip_qkv is not None: | 
					
						
						|  | query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  | key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  | value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = position_embeddings | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and causal_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = True if causal_mask is None and q_len > 1 else False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = False | 
					
						
						|  | causal_mask = None | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=causal_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LLADAMOE_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": LLaDAMoEAttention, | 
					
						
						|  | "flash_attention_2": LLaDAMoEFlashAttention2, | 
					
						
						|  | "sdpa": LLaDAMoESdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoESparseMoeBlock(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_experts = config.num_experts | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  | self.norm_topk_prob = False | 
					
						
						|  | self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False) | 
					
						
						|  | self.experts = nn.ModuleList([LLaDAMoEMLP(config, 'expert') for _ in range(self.num_experts)]) | 
					
						
						|  | self.score_func = config.moe_router_score_function | 
					
						
						|  | if config.moe_router_enable_expert_bias: | 
					
						
						|  | self.register_buffer("expert_bias", torch.zeros(self.num_experts)) | 
					
						
						|  | else: | 
					
						
						|  | self.expert_bias = None | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | batch_size, sequence_length, hidden_dim = hidden_states.shape | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  | router_logits = self.gate(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | 
					
						
						|  |  | 
					
						
						|  | if self.expert_bias is not None: | 
					
						
						|  | routing_weights += self.expert_bias | 
					
						
						|  |  | 
					
						
						|  | routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
						
						|  | if self.norm_topk_prob: | 
					
						
						|  | routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | 
					
						
						|  |  | 
					
						
						|  | routing_weights = routing_weights.to(hidden_states.dtype) | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states = torch.zeros( | 
					
						
						|  | (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for expert_idx in range(self.num_experts): | 
					
						
						|  | expert_layer = self.experts[expert_idx] | 
					
						
						|  | idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | 
					
						
						|  | current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
						
						|  | final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | 
					
						
						|  | return final_hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEDecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: LLaDAConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.mlp_type = 'dense' if config.moe_layer_freq[layer_idx] == 0 else 'moe' | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = LLADAMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = LLaDAMoESparseMoeBlock(config) if self.mlp_type == 'moe' else LLaDAMoEMLP(config, 'dense') | 
					
						
						|  | self.input_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.post_attention_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | if config.shared_expert_intermediate_size is not None and self.mlp_type == 'moe': | 
					
						
						|  | self.shared_expert = LLaDAMoEMLP(config, 'shared_expert') | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | output_router_logits: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): | 
					
						
						|  | For diffusion language model, attention_mask is set to None(full attention). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_router_logits (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the logits of all the routers. They are useful for computing the router loss, | 
					
						
						|  | and should not be returned during inference. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | For diffusion language model, use_cache is set to False by default. | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): | 
					
						
						|  | For diffusion language model, past_key_value is set to None by default. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | For diffusion language model, cache_position is set to None by default. | 
					
						
						|  | position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
						
						|  | Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
						
						|  | with `head_dim` being the embedding dimension of each attention head. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
						
						|  | into the model | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | use_cache = False | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | shared_expert_states = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "shared_expert"): | 
					
						
						|  | hidden_states = hidden_states + self.shared_expert(shared_expert_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LLADAMOE_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`LLaDAConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | LLADAMOE_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = LLaDAConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["LLaDAMoEDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = ["past_key_values"] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  | _supports_quantized_cache = True | 
					
						
						|  | _supports_static_cache = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LLADAMOE_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. | 
					
						
						|  | **For diffusion language model, attention_mask is set to None(full attention) by default.** | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | **For diffusion language model, past_key_values can not be applied by default.** | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | For diffusion languagem model, the use_cache and past_key_values can not be enabled for default setting. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | output_router_logits (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | 
					
						
						|  | should not be returned during inference. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | **For diffusion language model, cache_position can not be applied by default.** | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | LLADAMOE_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEModel(LLaDAMoEPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDAMoEDecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: LLaDAConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: LLaDAConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [LLaDAMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.norm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.rotary_emb = LLaDAMoERotaryEmbedding(config=config) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | output_router_logits: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Union[Tuple, MoeModelOutputWithPast]: | 
					
						
						|  | assert (not use_cache and past_key_values is None and cache_position is None), "The cache mechanism is not suppotred for LLaDA MoE by default." | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_router_logits = ( | 
					
						
						|  | output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | return_legacy_cache = False | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
						
						|  | cache_position = torch.arange( | 
					
						
						|  | past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = None | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Please note that, unlike autoregressive models, LLaDA MoE employs a bidirectional attention mechanism. " | 
					
						
						|  | f"In the forward code in modeling_lladamoe.py, we set both attention_mask and causal_mask to None, " | 
					
						
						|  | f"which affects the default causal attention and causes the input attention_mask parameter to become ineffective. " | 
					
						
						|  | f"If you pass an attention mask and expect the model to use it for computing other attention mechanisms, " | 
					
						
						|  | f"it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | all_router_logits = () if output_router_logits else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | causal_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | output_router_logits, | 
					
						
						|  | use_cache, | 
					
						
						|  | cache_position, | 
					
						
						|  | position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | position_embeddings=position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_router_logits and layer_outputs[-1] is not None: | 
					
						
						|  | all_router_logits += (layer_outputs[-1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = next_decoder_cache if use_cache else None | 
					
						
						|  | if return_legacy_cache: | 
					
						
						|  | next_cache = next_cache.to_legacy_cache() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return MoeModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | router_logits=all_router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaDAMoEModelLM(LLaDAMoEPreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = LLaDAMoEModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.router_aux_loss_coef = config.router_aux_loss_coef | 
					
						
						|  | self.num_experts = config.num_experts | 
					
						
						|  | self.num_experts_per_tok = config.num_experts_per_tok | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | output_router_logits: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | num_logits_to_keep: int = 0, | 
					
						
						|  | ) -> Union[Tuple, MoeCausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | For the current inference code of the diffusion language model, passing the parameters `labels` and `num_logits_to_keep` to compute loss is not supported. | 
					
						
						|  | Please note that for the diffusion language model, you cannot use model.generate() to generate responses. Please use the provided sampling code to generate model outputs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, AutoModel | 
					
						
						|  |  | 
					
						
						|  | >>> model = AutoModel.from_pretrained("path/to/LLaDAMoE") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("path/to/LLaDAMoE") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = generate() # Please use the customized generate method instead of model.generate(). | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m' | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | assert (labels is None and num_logits_to_keep == 0), "LLaDAMoE model does not support calculate loss in the forward pass." | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_router_logits = ( | 
					
						
						|  | output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | output_router_logits=output_router_logits, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  |  | 
					
						
						|  | aux_loss = None | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | aux_loss = load_balancing_loss_func( | 
					
						
						|  | outputs.router_logits if return_dict else outputs[-1], | 
					
						
						|  | self.num_experts, | 
					
						
						|  | self.num_experts_per_tok, | 
					
						
						|  | attention_mask, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | if output_router_logits: | 
					
						
						|  | output = (aux_loss,) + output | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MoeCausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | aux_loss=aux_loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | router_logits=outputs.router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  |