metadata
			license: mit
tags:
  - generated_from_trainer
datasets:
  - common_language
metrics:
  - accuracy
model-index:
  - name: language-detection-fine-tuned-on-xlm-roberta-base
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: common_language
          type: common_language
          args: full
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9738386718094919
language-detection-fine-tuned-on-xlm-roberta-base
This model is a fine-tuned version of xlm-roberta-base on the common_language dataset. It achieves the following results on the evaluation set:
- Loss: 0.1886
- Accuracy: 0.9738
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 0.1 | 1.0 | 22194 | 0.1886 | 0.9738 | 
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3