EAGLE 3
Collection
Train Eagle 3 for SGLang with SpecForge
•
3 items
•
Updated
•
2
The Eagle3 draft model was trained using the SpecForge framework for the Qwen3-235B-A22B model, leveraging a combination of UltraChat and ShareGPT datasets.
Output throughput: 224.168 token/s
Accept length: 3.538
Output throughput: 241.5 token/s
Accept length: 3.019
You can use this Eagle3 draft model in SGLang with the following command:
python3 -m sglang.launch_server \
--model <Qwen3-235B-A22B> \
--speculative-algorithm EAGLE3 \
--speculative-draft-model-path <EAGLE3-Qwen3-235B-A22B> \
--speculative-num-steps 5 \
--speculative-eagle-topk 8 \
--speculative-num-draft-tokens 32 \
--mem-fraction-static 0.75 \
--tp 8 \
--enable-ep-moe \
--context-length 8192 \
--trust-remote-code \
--host 0.0.0.0 \
--port 30000 \
--dtype bfloat16