powercoder-3b / kvg_dynamic_cache.py
seanmanifest's picture
Upload folder using huggingface_hub
dd72573 verified
import copy
import json
import os
from abc import ABC, abstractmethod
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Any, Optional, Union
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_6
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import (
is_torch_greater_or_equal,
is_torchdynamo_compiling,
logging,
)
_is_torch_greater_or_equal_than_2_7 = is_torch_greater_or_equal("2.7", accept_dev=True)
logger = logging.get_logger(__name__)
class CacheLayerMixin(ABC):
"""Base, abstract class for a single layer's cache."""
is_compileable = False
def __init__(self):
self.keys, self.values, self.gatings = None, None, None
@abstractmethod
def update(
self, key_states: torch.Tensor, value_states: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
) -> tuple[torch.Tensor, torch.Tensor]: ...
@abstractmethod
def lazy_initialization(self, key_states: torch.Tensor): ...
@abstractmethod
def get_seq_length(self, cache_position=None) -> int: ...
@abstractmethod
def get_max_cache_shape(self) -> int: ...
@abstractmethod
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]: ...
def offload(self):
"""Offload this layer's data to CPU device."""
if self.keys is not None:
self.keys = self.keys.to("cpu", non_blocking=True)
self.values = self.values.to("cpu", non_blocking=True)
self.gatings = self.gatings.to("cpu", non_blocking=True)
def prefetch(self):
"""In case of layer offloading, this allows to move the data back to the layer's device ahead of time."""
if self.keys is not None and self.keys.device != self.device:
self.keys = self.keys.to(self.device, non_blocking=True)
self.values = self.values.to(self.device, non_blocking=True)
self.gatings = self.gatings.to(self.device, non_blocking=True)
def reset(self) -> None:
"""Resets the cache values while preserving the objects"""
if self.keys is not None:
self.keys.zero_()
self.values.zero_()
self.gatings.zero_()
def reorder_cache(self, beam_idx: torch.LongTensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Reorders this layer's cache for beam search."""
if self.keys.numel():
device = self.keys.device
self.keys = self.keys.index_select(0, beam_idx.to(device))
if self.values.numel():
device = self.values.device
self.values = self.values.index_select(0, beam_idx.to(device))
if self.gatings.numel():
device = self.gatings.device
self.gatings = self.gatings.index_select(0, beam_idx.to(device))
class DynamicLayer(CacheLayerMixin):
"""
A cache layer that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the Key and Value states as tensors with shape `[batch_size, num_heads, seq_len, head_dim]`.
See `CacheLayerMixin` for details on common methods that are implemented by all cache layers.
"""
is_sliding = False
def lazy_initialization(self, key_states: torch.Tensor):
self.dtype, self.device = key_states.dtype, key_states.device
self.keys = torch.tensor([], dtype=self.dtype, device=self.device)
self.values = torch.tensor([], dtype=self.dtype, device=self.device)
self.gatings = torch.tensor([], dtype=torch.float32, device=self.device)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
gate_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
cache_kwargs (`dict[str, Any]`, *optional*):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicLayer`.
Return:
A tuple containing the updated key and value states.
"""
# Lazy initialization
if self.keys is None:
self.lazy_initialization(key_states)
self.keys = torch.cat([self.keys, key_states], dim=-2)
self.values = torch.cat([self.values, value_states], dim=-2)
self.gatings = torch.cat([self.gatings, gate_states], dim=-1)
return self.keys, self.values, self.gatings
def get_seq_length(self, cache_position=None) -> int:
"""Returns the sequence length of the cached states."""
if self.keys is None or self.keys.numel() == 0:
return 0
return self.keys.shape[-2]
def get_max_cache_shape(self) -> int:
"""Returns the maximum sequence length of the cache object. DynamicLayer does not have a maximum length."""
return -1
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
"""Reorders the cache for beam search, given the selected beam indices."""
if self.keys is not None and self.keys.numel():
self.keys = self.keys.index_select(0, beam_idx.to(self.keys.device))
self.values = self.values.index_select(0, beam_idx.to(self.values.device))
self.gatings = self.gatings.index_select(0, beam_idx.to(self.gatings.device))
def crop(self, max_length: int) -> None:
"""
Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
negative to remove `max_length` tokens.
"""
if max_length < 0:
max_length = self.get_seq_length() - abs(max_length)
if self.get_seq_length() <= max_length:
return
if self.keys is not None and self.keys.numel():
self.keys = self.keys[..., :max_length, :]
self.values = self.values[..., :max_length, :]
self.gatings = self.gatings[..., :max_length]
def batch_repeat_interleave(self, repeats: int) -> None:
"""Repeat the cache `repeats` times in the batch dimension."""
if self.keys is not None and self.keys.numel():
self.keys = self.keys.repeat_interleave(repeats, dim=0)
self.values = self.values.repeat_interleave(repeats, dim=0)
self.gatings = self.gatings.repeat_interleave(repeats, dim=0)
def batch_select_indices(self, indices: torch.Tensor) -> None:
"""Only keep the `indices` in the batch dimension of the cache."""
if self.keys is not None and self.keys.numel():
self.keys = self.keys[indices, ...]
self.values = self.values[indices, ...]
self.gatings = self.gatings[indices, ...]
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the mask"""
kv_offset = 0
query_length = cache_position.shape[0]
past_seen_tokens = self.get_seq_length()
kv_length = query_length + past_seen_tokens
return kv_length, kv_offset
@classmethod
def from_tensors(cls, keys: torch.Tensor, values: torch.Tensor, gatings: torch.Tensor) -> "DynamicLayer":
"""
Build a `DynamicLayer` instance from pre-existing key/value tensors.
Args:
keys (`torch.Tensor`):
Key cache tensor of shape ``[batch_size, num_heads, seq_len, head_dim]``.
values (`torch.Tensor`):
Value cache tensor of shape ``[batch_size, num_heads, seq_len, head_dim]``.
gatings (`torch.Tensor`):
Gating cache tensor of shape ``[batch_size, num_heads, seq_len]``.
Returns:
`DynamicLayer`: The newly constructed layer whose internal cache directly references
the supplied tensors.
"""
layer = cls()
layer.dtype, layer.device = keys.dtype, keys.device
layer.keys = keys
layer.values = values
layer.gatings = gatings
return layer
class StaticLayer(CacheLayerMixin):
"""
A static cache layer that stores the Key and Value states as static tensors with shape `[batch_size, num_heads, seq_len, head_dim]`.
It allocates its full backing tensors up-front and mutates them in-place. Built for `torch.compile` support.
See `CacheLayerMixin` for details on common methods that are implemented by all cache layers.
"""
is_compileable = True
is_sliding = False
def __init__(self, max_cache_len: int):
"""
Args:
max_cache_len (`int`):
Maximum number of tokens that can be stored, used for tensor preallocation.
"""
super().__init__()
self.max_cache_len = max_cache_len
def lazy_initialization(self, key_states: torch.Tensor):
"""
Lazy initialization of the keys and values tensors. This allows to get all properties (dtype, device,
num_heads in case of TP etc...) at runtime directly, which is extremely practical as it avoids moving
devices, dtypes etc later on for each `update` (which could break the static dynamo addresses as well).
If this is unwanted, one can call `early_initialization(...)` on the Cache directly, which will call this
function ahead-of-time (this is required for `torch.export` for example). Note that for `compile`, as we
internally don't compile the prefill, this is guaranteed to have been called already when compiling.
If compiling the prefill as well, e.g. calling `model.compile(...)` before `generate` with a static cache,
it is still supported in general, but without guarantees depending on the compilation options (e.g. cuda graphs,
i.e. `mode="reduce-overhead"` is known to fail). But it will in general work correctly, and prefill should
not be compiled anyway for performances!
"""
self.max_batch_size, self.num_heads, _, self.head_dim = key_states.shape
self.dtype, self.device = key_states.dtype, key_states.device
self.keys = torch.zeros(
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
dtype=self.dtype,
device=self.device,
)
self.values = torch.zeros(
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
dtype=self.dtype,
device=self.device,
)
self.gatings = torch.zeros(
(self.max_batch_size, self.num_heads, self.max_cache_len),
dtype=torch.float32,
device=self.device,
)
# Note: `mark_static_address` is used to tag the cache as a fixed data pointer, preventing compiled graph
# breaks when updating the cache. However, it is not supported when tracing the graph, so we skip it in this case.
# As prefill should never be compiled, this is not an issue and it will still be run (except when users compile
# prefill explicitly, but this should be avoided!)
if not is_torchdynamo_compiling():
torch._dynamo.mark_static_address(self.keys)
torch._dynamo.mark_static_address(self.values)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
gate_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Update the static cache tensors in place.
Args:
key_states (`torch.Tensor`): The new key states to cache.
value_states (`torch.Tensor`): The new value states to cache.
gate_states (`torch.Tensor`): The new gate states to cache.
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
Returns:
tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]: The updated key, value, and gate states.
"""
# Lazy initialization
if self.keys is None:
self.lazy_initialization(key_states)
# Some old models give None for `cache_position` or even omit passing `cache_kwargs` when used as cross-attention,
# in which case we should copy the whole Layer (key_states.shape[-2] == self.max_cache_len)
cache_position = cache_kwargs.get("cache_position") if cache_kwargs is not None else None
cache_position = (
cache_position if cache_position is not None else torch.arange(key_states.shape[-2], device=self.device)
)
# Update the cache
try:
self.keys.index_copy_(2, cache_position, key_states)
self.values.index_copy_(2, cache_position, value_states)
self.gatings.index_copy_(2, cache_position, gate_states)
except NotImplementedError:
# Fallback for devices like MPS where index_copy_ might not be supported.
self.keys[:, :, cache_position] = key_states
self.values[:, :, cache_position] = value_states
self.gatings[:, :, cache_position] = gate_states
return self.keys, self.values, self.gatings
def get_max_cache_shape(self) -> int:
"""Return the maximum cache shape of the cache"""
return self.max_cache_len
def get_seq_length(self, cache_position=None) -> int:
"""Returns the sequence length of the cached states."""
if cache_position is not None:
return int(cache_position[-1] + 1)
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
seq_length = (self.keys[0, 0].any(dim=-1)).sum() if self.keys is not None else 0
return seq_length
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
"""Reorders the cache for beam search, given the selected beam indices."""
dev = self.keys.device
beam_idx_dev = beam_idx.to(dev)
self.keys = self.keys.index_select(0, beam_idx_dev)
self.values = self.values.index_select(0, beam_idx_dev)
self.gatings = self.gatings.index_select(0, beam_idx_dev)
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the attention mask"""
kv_offset = 0
kv_length = self.max_cache_len
return kv_length, kv_offset
class KeyValuesGatingWrapper:
"""Helper class for Cache that simulates layer-indexed key/value lists from a layered cache.
This allows for BC access and writing, e.g., cache.key_cache[idx] = ...
Deprecated in favor of Cache.layers[idx].keys/values. TODO: remove in v4.56.0"""
def __init__(self, layers, cache_type="keys"):
self.layers = layers
self.cache_type = cache_type
def __getitem__(self, idx):
if isinstance(idx, slice):
return [getattr(layer, self.cache_type) for layer in self.layers[idx]]
return getattr(self.layers[idx], self.cache_type)
def __setitem__(self, idx, value):
if isinstance(idx, slice):
for layer, val in zip(self.layers[idx], value):
setattr(layer, self.cache_type, val)
else:
setattr(self.layers[idx], self.cache_type, value)
def __len__(self):
return len(self.layers)
def __iter__(self):
for layer in self.layers:
yield getattr(layer, self.cache_type)
def __bool__(self):
return bool(self.layers)
class Cache:
"""
A `Cache` is mostly a list of `CacheLayerMixin` objects, one per model layer. It serves as a container for
the Cache of each layer.
Parameters:
layers (`Optional`, *optional*):
A list of pre-created `CacheLayerMixin`. If omitted (`None`), then `layer_class_to_replicate` will
be used.
layer_class_to_replicate (`type[CacheLayerMixin]`, *optional*):
Only used if `layers` is omitted (`None`), in which case it will be used as the base class for each layer,
and the layers will be added lazily as soon as `update` is called with a `layer_idx` greater than the current
list of layers.
offloading (`bool`, *optional*, defaults to `False`):
Whether to perform offloading of the layers to `cpu`, to save GPU memory.
offload_only_non_sliding (`bool`, *optional*, defaults to `True`):
If `offloading` is `True`, this further decides if only the non-sliding layers will be offloaded (because
usually the sliding layers are small in size, so there is no need to offload them, and skipping it is faster).
"""
def __init__(
self,
layers: Optional[list[CacheLayerMixin]] = None,
layer_class_to_replicate: Optional[type[CacheLayerMixin]] = None,
offloading: bool = False,
offload_only_non_sliding: bool = True,
):
if layers is not None and layer_class_to_replicate is not None:
raise ValueError(
"You can construct a Cache either from a list `layers` of all the predefined `CacheLayer`, or from a "
"`layer_class_to_replicate`, in which case the Cache will append a new layer corresponding to "
"`layer_class_to_replicate` for each new call to `update` with an idx not already in the Cache."
)
if layers is None and layer_class_to_replicate is None:
raise ValueError(
"You should provide exactly one of `layers` or `layer_class_to_replicate` to initialize a Cache."
)
self.layers = layers if layers is not None else []
self.layer_class_to_replicate = layer_class_to_replicate
self.offloading = offloading
if self.offloading:
self.only_non_sliding = offload_only_non_sliding
self.prefetch_stream = torch.Stream() if _is_torch_greater_or_equal_than_2_7 else torch.cuda.Stream()
def __repr__(self):
return f"{self.__class__.__name__}(layers={self.layers})"
def prefetch(self, layer_idx: int, only_non_sliding: bool = True):
"""
Prefetch a given layer on its device. If `only_non_sliding` is True, it will try to prefetch only the layers
which are non-sliding. If the `layer_idx` is outside the range, this will circle back to the first layers.
Note that we use a non-default stream for this, to avoid blocking.
"""
if only_non_sliding:
# Try to find next non-sliding, starting at `layer_idx`
try:
layer_idx = layer_idx + self.is_sliding[layer_idx:].index(False)
# In this case, we need to circle back to the begining
except ValueError:
layer_idx = self.is_sliding.index(False)
else:
layer_idx = layer_idx if layer_idx < len(self.layers) else 0
# Prefetch
with self.prefetch_stream if _is_torch_greater_or_equal_than_2_7 else torch.cuda.stream(self.prefetch_stream):
self.layers[layer_idx].prefetch()
def offload(self, layer_idx: int, only_non_sliding: bool = True):
"""
Offload a given `layer_idx`. If `only_non_sliding` is True, it will offload `layer_idx` only if it is a
non-sliding layer. Note that we do it on the default stream, so that we ensure all earlier
computation in the layer's `update` methods are finished.
"""
if not (only_non_sliding and self.is_sliding[layer_idx]):
self.layers[layer_idx].offload()
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
gate_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
gate_states (`torch.Tensor`):
The new gate states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`dict[str, Any]`, *optional*):
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
cache to be created.
Return:
A tuple containing the updated key, value, and gate states.
"""
# In this case, the `layers` were not provided, and we must append as much as `layer_idx`
if self.layer_class_to_replicate is not None:
while len(self.layers) <= layer_idx:
self.layers.append(self.layer_class_to_replicate())
if self.offloading:
# Wait for the stream to finish if needed, and start prefetching the next layer
torch.cuda.default_stream(key_states.device).wait_stream(self.prefetch_stream)
self.prefetch(layer_idx + 1, self.only_non_sliding)
keys, values, gatings = self.layers[layer_idx].update(key_states, value_states, gate_states, cache_kwargs)
if self.offloading:
self.offload(layer_idx, self.only_non_sliding)
return keys, values, gatings
def early_initialization(
self, batch_size: int, num_heads: int, head_dim: int, dtype: torch.dtype, device: torch.device
):
"""
Initialize all the layers in advance (it's otherwise lazily initialized on the first `update` call).
This is useful for our `export` recipes, as `export` needs everything in advance.
"""
# Note that the initialization needs all dimensions (except -2), as well as device and dtype, so we use
# this fake tensor approach. It has size 0 on the -2 dimension, so it does not allocate any data (it only
# creates an empty tensor with correct shape, dtype and device), which is very efficient and practical
fake_keys_tensor = torch.zeros((batch_size, num_heads, 0, head_dim), dtype=dtype, device=device)
# Init all layers
for layer in self.layers:
layer.lazy_initialization(fake_keys_tensor)
def get_seq_length(self, layer_idx: int = 0, cache_position=None) -> int:
"""Returns the sequence length of the cache for the given layer."""
if layer_idx >= len(self.layers):
return 0
return self.layers[layer_idx].get_seq_length(cache_position)
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
"""
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
the given layer at `layer_idx`.
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
"""
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, the size is
# simply the shape of `cache_position`
if layer_idx >= len(self.layers):
return cache_position.shape[0], 0
return self.layers[layer_idx].get_mask_sizes(cache_position)
def get_max_cache_shape(self, layer_idx: int = 0) -> int:
"""Returns maximum sequence length of the cache object. Dynamic caches do not have a maximum length."""
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, return -1
# as DynamicLayer does
if layer_idx >= len(self.layers):
return -1
return self.layers[layer_idx].get_max_cache_shape()
def reset(self):
"""Recursively reset all layers tensors"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].reset()
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorder the cache for beam search"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].reorder_cache(beam_idx)
def crop(self, max_length: int):
"""Crop the cache to the given length"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].crop(max_length)
def batch_repeat_interleave(self, repeats: int):
"""Repeat and interleave the cache"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].batch_repeat_interleave(repeats)
def batch_select_indices(self, indices: torch.Tensor):
"""Select indices from the cache"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].batch_select_indices(indices)
@property
def max_batch_size(self) -> int:
"""Return the maximum batch size of the cache"""
values = [layer.max_batch_size for layer in self.layers]
if len(set(values)) > 1:
raise ValueError(f"Max batch size is not consistent across layers: {values}")
return values[0]
@property
def max_cache_len(self) -> int:
"""Return the maximum cache length of the cache"""
values = [layer.max_cache_len for layer in self.layers]
return max(values)
@property
def is_compileable(self) -> bool:
"""Return whether the cache is compileable"""
# For DynamicCache dispatching the layers lazily (otherwise, all([]) is True)
if len(self.layers) == 0:
return False
return all(layer.is_compileable for layer in self.layers)
@property
def is_sliding(self) -> list[bool]:
"""Return whether the layers of the cache are sliding window"""
return [getattr(layer, "is_sliding", False) for layer in self.layers]
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
"""
Support for backwards-compatible `past_key_values` indexing, e.g. `past_key_values[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self.layers):
return self.layers[layer_idx].keys, self.layers[layer_idx].values, self.layers[layer_idx].gatings
else:
raise KeyError(
f"Cache only has {len(self.layers)} layers, attempted to access layer with index {layer_idx}"
)
def __iter__(self):
"""
Support for backwards-compatible `past_key_values` iteration, e.g. `for x in past_key_values:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
yield (self.layers[layer_idx].keys, self.layers[layer_idx].values, self.layers[layer_idx].gatings)
def __len__(self):
"""
This value corresponds to the number of layers in the model.
"""
# Note: for DynamicCache, layers are initialized lazily, so this will not be accurate before the first
# forward through all the layers
return len(self.layers)
@property
def key_cache(self) -> KeyValuesGatingWrapper:
"""List-like object of key cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].keys`"""
logger.warning_once(
"`cache.key_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].keys` instead."
)
return KeyValuesGatingWrapper(self.layers, "keys")
@property
def value_cache(self) -> KeyValuesGatingWrapper:
"""List-like object of value cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].values`"""
logger.warning_once(
"`cache.value_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].values` instead."
)
return KeyValuesGatingWrapper(self.layers, "values")
@property
def gating_cache(self) -> KeyValuesGatingWrapper:
"""List-like object of gate cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].gatings`"""
logger.warning_once(
"`cache.gate_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].gatings` instead."
)
return KeyValuesGatingWrapper(self.layers, "gatings")
class DynamicCache(Cache):
"""
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the Key, Value, and Gating states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]` for Key and Value, and `[batch_size, num_heads, seq_len]` for Gating.
See `Cache` for details on common methods that are implemented by all cache classes.
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
>>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> past_key_values = DynamicCache()
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> outputs.past_key_values # access cache filled with key/values from generation
DynamicCache()
```
"""
# Specialized constructor for DDP cache data, needed for BC
def __init__(self, ddp_cache_data: Optional[Iterable[tuple[torch.Tensor, torch.Tensor, torch.Tensor]]] = None):
# `ddp_cache_data` was originally added for compatibility with `torch.distributed` (DDP). See #36212
# and #36373 for more information. In a nutshell, it is `map(gather_map, zip(*caches))`, i.e. each item in the
# iterable contains the key and value states for a layer gathered across replicas by torch.distributed
# (shape=[global batch size, num_heads, seq_len, head_dim]).
if ddp_cache_data is not None:
layers = []
for key_states, value_states, gate_states in ddp_cache_data:
layers.append(DynamicLayer.from_tensors(key_states, value_states, gate_states))
super().__init__(layers=layers)
else:
super().__init__(layer_class_to_replicate=DynamicLayer)
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
"""
Converts the `Cache` instance into the its equivalent in the legacy cache format. Used for
backward compatibility.
"""
legacy_cache = ()
for layer in self.layers:
legacy_cache += ((layer.keys, layer.values, layer.gatings),)
return legacy_cache
@classmethod
def from_legacy_cache(cls, past_key_values: tuple[tuple[torch.FloatTensor, torch.FloatTensor], ...]) -> "Cache":
"""
Converts a cache in the legacy cache format into an equivalent `Cache`. Used for
backward compatibility.
"""
cache = cls()
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
key_states, value_states, gate_states = past_key_values[layer_idx]
cache.update(key_states, value_states, gate_states, layer_idx)
return cache
# Utilities for `DynamicCache` <> torch.export support
if is_torch_greater_or_equal("2.3"):
def _get_cache_dict(cache: DynamicCache):
if any(not isinstance(layer, DynamicLayer) for layer in cache.layers):
raise RuntimeError("This pytree flattening function should only be applied to DynamicCache")
if not is_torch_greater_or_equal_than_2_6:
logger.warning_once(
"DynamicCache + torch.export is tested on torch 2.6.0+ and may not work on earlier versions."
)
return {
"key_cache": [layer.keys for layer in cache.layers if layer.keys is not None],
"value_cache": [layer.values for layer in cache.layers if layer.values is not None],
"gating_cache": [layer.gatings for layer in cache.layers if layer.gatings is not None],
}
def _unflatten_dynamic_cache(
values,
context: torch.utils._pytree.Context,
):
dictionary = torch.utils._pytree._dict_unflatten(values, context)
cache = DynamicCache()
# Reconstruct layers from keys and values lists
key_list = dictionary.get("key_cache", [])
value_list = dictionary.get("value_cache", [])
gating_list = dictionary.get("gating_cache", [])
for idx in range(max(len(key_list), len(value_list), len(gating_list))):
key = key_list[idx] if idx < len(key_list) else None
value = value_list[idx] if idx < len(value_list) else None
gating = gating_list[idx] if idx < len(gating_list) else None
cache.update(key, value, gating, idx)
return cache
torch.utils._pytree.register_pytree_node(
DynamicCache,
lambda dynamic_cache: torch.utils._pytree._dict_flatten(_get_cache_dict(dynamic_cache)),
_unflatten_dynamic_cache,
serialized_type_name=f"{DynamicCache.__module__}.{DynamicCache.__name__}",
flatten_with_keys_fn=lambda dynamic_cache: torch.utils._pytree._dict_flatten_with_keys(
_get_cache_dict(dynamic_cache)
),
)
# TODO (tmanlaibaatar) This won't be needed in torch 2.7.
torch.fx._pytree.register_pytree_flatten_spec(
DynamicCache, lambda cache, spec: torch.fx._pytree._dict_flatten_spec(_get_cache_dict(cache), spec)
)