marcel/phi-2-openhermes-30k
This model was converted to MLX format from microsoft/phi-2.
Refer to the original model card for more details on the model.
Use with mlx
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model marcel/phi-2-openhermes-30k --prompt "My name is"
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
    "marcel/phi-2-openhermes-30k",
    low_cpu_mem_usage=True,
    device_map="auto",
    trust_remote_code=True,
    torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained("phi-2-openhermes-30k")
input_text = "### Human: Give me a good recipe for a chinese dish\n\n### Assistant:"
outputs = model.generate(
    tokenizer(input_text, return_tensors="pt").to(model.device)['input_ids'],
    max_length=1024,
    temperature=0.7,
    top_p=0.9,
    do_sample=True,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 60.37 | 
| AI2 Reasoning Challenge (25-Shot) | 61.01 | 
| HellaSwag (10-Shot) | 74.72 | 
| MMLU (5-Shot) | 57.17 | 
| TruthfulQA (0-shot) | 45.38 | 
| Winogrande (5-shot) | 74.90 | 
| GSM8k (5-shot) | 49.05 | 
- Downloads last month
- 5
Dataset used to train marcel/phi-2-openhermes-30k
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard61.010
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard74.720
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard57.170
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard45.380
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard74.900
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard49.050