Precision is very important in AI as it shapes how accurate and efficient models are. It controls how finely numbers are represented, approximating real-world values with formats like fixed-point and floating-point. A recent BF16 → FP16 study renewed attention to precision impact. Here are the main precision types used in AI, from full precision for training to ultra-low precision for inference:
1. FP32 (Float32): Standard full-precision float used in most training: 1 sign bit, 8 exponent bits, 23 mantissa bits. Default for backward-compatible training and baseline numerical stability
2. FP16 (Float16) → https://arxiv.org/abs/2305.10947v6 Half-precision float. It balances accuracy and efficiency. 1 sign bit, 5 exponent bits, 10 mantissa bits. Common on NVIDIA Tensor Cores and mixed-precision setups. There’s now a new wave of using it in reinforcement learning: https://www.turingpost.com/p/fp16