|
|
from typing import Union, Iterable |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from rdkit import Chem |
|
|
import networkx as nx |
|
|
from networkx.algorithms import isomorphism |
|
|
from Bio.PDB.Polypeptide import is_aa |
|
|
|
|
|
|
|
|
class Queue(): |
|
|
def __init__(self, max_len=50): |
|
|
self.items = [] |
|
|
self.max_len = max_len |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.items) |
|
|
|
|
|
def add(self, item): |
|
|
self.items.insert(0, item) |
|
|
if len(self) > self.max_len: |
|
|
self.items.pop() |
|
|
|
|
|
def mean(self): |
|
|
return np.mean(self.items) |
|
|
|
|
|
def std(self): |
|
|
return np.std(self.items) |
|
|
|
|
|
|
|
|
def reverse_tensor(x): |
|
|
return x[torch.arange(x.size(0) - 1, -1, -1)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_grad_norm( |
|
|
parameters: Union[torch.Tensor, Iterable[torch.Tensor]], |
|
|
norm_type: float = 2.0) -> torch.Tensor: |
|
|
""" |
|
|
Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_ |
|
|
""" |
|
|
|
|
|
if isinstance(parameters, torch.Tensor): |
|
|
parameters = [parameters] |
|
|
parameters = [p for p in parameters if p.grad is not None] |
|
|
|
|
|
norm_type = float(norm_type) |
|
|
|
|
|
if len(parameters) == 0: |
|
|
return torch.tensor(0.) |
|
|
|
|
|
device = parameters[0].grad.device |
|
|
|
|
|
total_norm = torch.norm(torch.stack( |
|
|
[torch.norm(p.grad.detach(), norm_type).to(device) for p in |
|
|
parameters]), norm_type) |
|
|
|
|
|
return total_norm |
|
|
|
|
|
|
|
|
def write_xyz_file(coords, atom_types, filename): |
|
|
out = f"{len(coords)}\n\n" |
|
|
assert len(coords) == len(atom_types) |
|
|
for i in range(len(coords)): |
|
|
out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n" |
|
|
with open(filename, 'w') as f: |
|
|
f.write(out) |
|
|
|
|
|
|
|
|
def write_sdf_file(sdf_path, molecules): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
w = Chem.SDWriter(str(sdf_path)) |
|
|
w.SetKekulize(False) |
|
|
for m in molecules: |
|
|
if m is not None: |
|
|
w.write(m) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def residues_to_atoms(x_ca, atom_encoder): |
|
|
x = x_ca |
|
|
one_hot = F.one_hot( |
|
|
torch.tensor(atom_encoder['C'], device=x_ca.device), |
|
|
num_classes=len(atom_encoder) |
|
|
).repeat(*x_ca.shape[:-1], 1) |
|
|
return x, one_hot |
|
|
|
|
|
|
|
|
def get_residue_with_resi(pdb_chain, resi): |
|
|
res = [x for x in pdb_chain.get_residues() if x.id[1] == resi] |
|
|
assert len(res) == 1 |
|
|
return res[0] |
|
|
|
|
|
|
|
|
def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0): |
|
|
|
|
|
if ligand.endswith(".sdf"): |
|
|
|
|
|
rdmol = Chem.SDMolSupplier(str(ligand))[0] |
|
|
ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float() |
|
|
resi = None |
|
|
else: |
|
|
|
|
|
chain, resi = ligand.split(':') |
|
|
ligand = get_residue_with_resi(pdb_model[chain], int(resi)) |
|
|
ligand_coords = torch.from_numpy( |
|
|
np.array([a.get_coord() for a in ligand.get_atoms()])) |
|
|
|
|
|
pocket_residues = [] |
|
|
for residue in pdb_model.get_residues(): |
|
|
if residue.id[1] == resi: |
|
|
continue |
|
|
|
|
|
res_coords = torch.from_numpy( |
|
|
np.array([a.get_coord() for a in residue.get_atoms()])) |
|
|
if is_aa(residue.get_resname(), standard=True) \ |
|
|
and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff: |
|
|
pocket_residues.append(residue) |
|
|
|
|
|
return pocket_residues |
|
|
|
|
|
|
|
|
def batch_to_list(data, batch_mask): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
idx = torch.argsort(batch_mask) |
|
|
batch_mask = batch_mask[idx] |
|
|
data = data[idx] |
|
|
|
|
|
chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist() |
|
|
return torch.split(data, chunk_sizes) |
|
|
|
|
|
|
|
|
def num_nodes_to_batch_mask(n_samples, num_nodes, device): |
|
|
assert isinstance(num_nodes, int) or len(num_nodes) == n_samples |
|
|
|
|
|
if isinstance(num_nodes, torch.Tensor): |
|
|
num_nodes = num_nodes.to(device) |
|
|
|
|
|
sample_inds = torch.arange(n_samples, device=device) |
|
|
|
|
|
return torch.repeat_interleave(sample_inds, num_nodes) |
|
|
|
|
|
|
|
|
def rdmol_to_nxgraph(rdmol): |
|
|
graph = nx.Graph() |
|
|
for atom in rdmol.GetAtoms(): |
|
|
|
|
|
graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum()) |
|
|
|
|
|
|
|
|
for bond in rdmol.GetBonds(): |
|
|
graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()) |
|
|
|
|
|
return graph |
|
|
|
|
|
|
|
|
def calc_rmsd(mol_a, mol_b): |
|
|
""" Calculate RMSD of two molecules with unknown atom correspondence. """ |
|
|
graph_a = rdmol_to_nxgraph(mol_a) |
|
|
graph_b = rdmol_to_nxgraph(mol_b) |
|
|
|
|
|
gm = isomorphism.GraphMatcher( |
|
|
graph_a, graph_b, |
|
|
node_match=lambda na, nb: na['atom_type'] == nb['atom_type']) |
|
|
|
|
|
isomorphisms = list(gm.isomorphisms_iter()) |
|
|
if len(isomorphisms) < 1: |
|
|
return None |
|
|
|
|
|
all_rmsds = [] |
|
|
for mapping in isomorphisms: |
|
|
atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()] |
|
|
atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum() |
|
|
for i in range(mol_b.GetNumAtoms())] |
|
|
assert atom_types_a == atom_types_b |
|
|
|
|
|
conf_a = mol_a.GetConformer() |
|
|
coords_a = np.array([conf_a.GetAtomPosition(i) |
|
|
for i in range(mol_a.GetNumAtoms())]) |
|
|
conf_b = mol_b.GetConformer() |
|
|
coords_b = np.array([conf_b.GetAtomPosition(mapping[i]) |
|
|
for i in range(mol_b.GetNumAtoms())]) |
|
|
|
|
|
diff = coords_a - coords_b |
|
|
rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1))) |
|
|
all_rmsds.append(rmsd) |
|
|
|
|
|
if len(isomorphisms) > 1: |
|
|
print("More than one isomorphism found. Returning minimum RMSD.") |
|
|
|
|
|
return min(all_rmsds) |
|
|
|
|
|
|
|
|
class AppendVirtualNodes: |
|
|
def __init__(self, max_ligand_size, atom_encoder, symbol): |
|
|
self.max_ligand_size = max_ligand_size |
|
|
self.atom_encoder = atom_encoder |
|
|
self.vidx = atom_encoder[symbol] |
|
|
|
|
|
def __call__(self, data): |
|
|
|
|
|
n_virt = self.max_ligand_size - data['num_lig_atoms'] |
|
|
mu = data['lig_coords'].mean(0, keepdim=True) |
|
|
sigma = data['lig_coords'].std(0).max() |
|
|
virt_coords = torch.randn(n_virt, 3) * sigma + mu |
|
|
|
|
|
|
|
|
one_hot = torch.cat((data['lig_one_hot'][:, :self.vidx], |
|
|
torch.zeros(data['num_lig_atoms'])[:, None], |
|
|
data['lig_one_hot'][:, self.vidx:]), dim=1) |
|
|
virt_one_hot = torch.zeros(n_virt, len(self.atom_encoder)) |
|
|
virt_one_hot[:, self.vidx] = 1 |
|
|
virt_mask = torch.ones(n_virt) * data['lig_mask'][0] |
|
|
|
|
|
data['lig_coords'] = torch.cat((data['lig_coords'], virt_coords)) |
|
|
data['lig_one_hot'] = torch.cat((one_hot, virt_one_hot)) |
|
|
data['num_lig_atoms'] = self.max_ligand_size |
|
|
data['lig_mask'] = torch.cat((data['lig_mask'], virt_mask)) |
|
|
data['num_virtual_atoms'] = n_virt |
|
|
|
|
|
return data |
|
|
|