DrugFlow / scripts /python /postprocess_metrics.py
mority's picture
Upload 53 files
6e7d4ba verified
import argparse
import os
import pickle
import sys
from collections import Counter, defaultdict
from pathlib import Path
import numpy as np
import pandas as pd
from rdkit import Chem
from scipy.stats import wasserstein_distance
from scipy.spatial.distance import jensenshannon
from tqdm import tqdm
basedir = Path(__file__).resolve().parent.parent.parent
sys.path.append(str(basedir))
from src.data.data_utils import atom_encoder, bond_encoder, encode_atom
from src.sbdd_metrics.evaluation import VALIDITY_METRIC_NAME, aggregated_metrics, collection_metrics, get_data_type
from src.sbdd_metrics.metrics import FullEvaluator
DATA_TYPES = data_types = FullEvaluator().dtypes
MEDCHEM_PROPS = [
'medchem.qed',
'medchem.sa',
'medchem.logp',
'medchem.lipinski',
'medchem.size',
'medchem.n_rotatable_bonds',
'energy.energy',
]
DOCKING_PROPS = [
'gnina.vina_score',
'gnina.gnina_score',
'gnina.vina_efficiency',
'gnina.gnina_efficiency',
]
RELEVANT_INTERACTIONS = [
'interactions.HBAcceptor',
'interactions.HBDonor',
'interactions.HB',
'interactions.PiStacking',
'interactions.Hydrophobic',
#
'interactions.HBAcceptor.normalized',
'interactions.HBDonor.normalized',
'interactions.HB.normalized',
'interactions.PiStacking.normalized',
'interactions.Hydrophobic.normalized'
]
def compute_discrete_distributions(smiles, name):
atom_counter = Counter()
bond_counter = Counter()
for smi in tqdm(smiles, desc=name):
mol = Chem.MolFromSmiles(smi)
mol = Chem.RemoveAllHs(mol, sanitize=False)
for atom in mol.GetAtoms():
try:
encoded_atom = encode_atom(atom, atom_encoder=atom_encoder)
except KeyError:
continue
atom_counter[encoded_atom] += 1
for bond in mol.GetBonds():
bond_counter[bond_encoder[str(bond.GetBondType())]] += 1
atom_distribution = np.zeros(len(atom_encoder))
bond_distribution = np.zeros(len(bond_encoder))
for k, v in atom_counter.items():
atom_distribution[k] = v
for k, v in bond_counter.items():
bond_distribution[k] = v
atom_distribution = atom_distribution / atom_distribution.sum()
bond_distribution = bond_distribution / bond_distribution.sum()
return atom_distribution, bond_distribution
def flatten_distribution(data, name, table):
aux = ['sample', 'sdf_file', 'pdb_file']
method_distributions = defaultdict(list)
sdf2sample2size = defaultdict(dict)
for _, row in table.iterrows():
sdf2sample2size[row['sdf_file']][int(row['sample'])] = row['medchem.size']
for item in tqdm(data, desc=name):
if item['medchem.valid'] is not True:
continue
if 'interactions.HBAcceptor' in item and 'interactions.HBDonor' in item:
item['interactions.HB'] = item['interactions.HBAcceptor'] + item['interactions.HBDonor']
new_entries = {}
for key, value in item.items():
if key.startswith('interactions'):
size = sdf2sample2size.get(item['sdf_file'], dict()).get(int(item['sample']))
if size is not None:
new_entries[key + '.normalized'] = value / size
item.update(new_entries)
for key, value in item.items():
if value is None:
continue
if key in aux:
continue
if key == 'energy.energy' and abs(value) > 1000:
continue
if get_data_type(key, DATA_TYPES, default=type(value)) == list:
method_distributions[key] += value
else:
method_distributions[key].append(value)
return method_distributions
def prepare_baseline_data(root_path, baseline_name):
metrics_detailed = pd.read_csv(f'{root_path}/metrics_detailed.csv')
metrics_detailed = metrics_detailed[metrics_detailed['medchem.valid']]
distributions = pickle.load(open(f'{root_path}/metrics_data.pkl', 'rb'))
distributions = flatten_distribution(distributions, name=baseline_name, table=metrics_detailed)
distributions['energy.energy'] = [v for v in distributions['energy.energy'] if -1000 <= v <= 1000]
for prop in MEDCHEM_PROPS + DOCKING_PROPS:
distributions[prop] = metrics_detailed[prop].dropna().values.tolist()
smiles = metrics_detailed['representation.smiles']
atom_distribution, bond_distribution = compute_discrete_distributions(smiles, name=baseline_name)
discrete_distributions = {
'atom_types': atom_distribution,
'bond_types': bond_distribution,
}
return distributions, discrete_distributions
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--in_dir', type=Path, required=True, help='Directory with samples')
p.add_argument('--out_dir', type=str, required=True, help='Output directory')
p.add_argument('--n_samples', type=int, required=False, default=None, help='N samples per target')
p.add_argument('--reference_smiles', type=str, default=None, help='Path to the .npy file with reference SMILES (optional)')
p.add_argument('--crossdocked_dir', type=str, required=False, default=None, help='Crossdocked data dir for computing distances between distributions')
args = p.parse_args()
Path(args.out_dir).mkdir(parents=True, exist_ok=True)
print('Combining data')
data = []
for file_path in tqdm(Path(args.in_dir).glob('metrics_data_*.pkl')):
with open(file_path, 'rb') as f:
d = pickle.load(f)
if args.n_samples is not None:
d = d[:args.n_samples]
data += d
with open(Path(args.out_dir, 'metrics_data.pkl'), 'wb') as f:
pickle.dump(data, f)
print('Combining detailed metrics')
tables = []
for file_path in tqdm(Path(args.in_dir).glob('metrics_detailed_*.csv')):
table = pd.read_csv(file_path)
if args.n_samples is not None:
table = table.head(args.n_samples)
tables.append(table)
table_detailed = pd.concat(tables)
table_detailed.to_csv(Path(args.out_dir, 'metrics_detailed.csv'), index=False)
print('Computing aggregated metrics')
evaluator = FullEvaluator(gnina='gnina', reduce='reduce')
table_aggregated = aggregated_metrics(
table_detailed,
data_types=evaluator.dtypes,
validity_metric_name=VALIDITY_METRIC_NAME
)
if args.reference_smiles is not None:
reference_smiles = np.load(args.reference_smiles)
col_metrics = collection_metrics(
table=table_detailed,
reference_smiles=reference_smiles,
validity_metric_name=VALIDITY_METRIC_NAME,
exclude_evaluators=[],
)
table_aggregated = pd.concat([table_aggregated, col_metrics])
table_aggregated.to_csv(Path(args.out_dir, 'metrics_aggregated.csv'), index=False)
# Computing distributions
if args.crossdocked_dir is not None:
# Loading training data distributions
crossdocked_distributions = None
crossdocked_discrete_distributions = None
precomputed_distr_path = f'{args.crossdocked_dir}/crossdocked_distributions.pkl'
precomputed_discrete_distr_path = f'{args.crossdocked_dir}/crossdocked_discrete_distributions.pkl'
if os.path.exists(precomputed_distr_path) and os.path.exists(precomputed_discrete_distr_path):
# Use precomputed distributions in case they exist
with open(precomputed_distr_path, 'rb') as f:
crossdocked_distributions = pickle.load(f)
with open(precomputed_discrete_distr_path, 'rb') as f:
crossdocked_discrete_distributions = pickle.load(f)
else:
assert os.path.exists(f'{args.crossdocked_dir}/metrics_detailed.csv')
assert os.path.exists(f'{args.crossdocked_dir}/metrics_data.pkl')
crossdocked_distributions, crossdocked_discrete_distributions = prepare_baseline_data(
root_path=args.crossdocked_dir,
baseline_name='crossdocked'
)
# Save precomputed distributions for faster next runs
with open(precomputed_distr_path, 'wb') as f:
pickle.dump(crossdocked_distributions, f)
with open(precomputed_discrete_distr_path, 'wb') as f:
pickle.dump(crossdocked_discrete_distributions, f)
# Selecting top-5 most frequent atom types, bond types, angles and torsions
bonds = sorted([
(k, len(v)) for k, v in crossdocked_distributions.items()
if k.startswith('geometry.') and sum(s.isalpha() for s in k.split('.')[1]) == 2
], key=lambda t: t[1], reverse=True)[:5]
top_5_bonds = [t[0] for t in bonds]
angles = sorted([
(k, len(v)) for k, v in crossdocked_distributions.items()
if k.startswith('geometry.') and sum(s.isalpha() for s in k.split('.')[1]) == 3
], key=lambda t: t[1], reverse=True)[:5]
top_5_angles = [t[0] for t in angles]
# Loading distributions of samples
distributions, discrete_distributions = prepare_baseline_data(args.out_dir, 'samples')
# Computing distances between distributions
distances = {'method': 'method',}
relevant_columns = MEDCHEM_PROPS + DOCKING_PROPS + RELEVANT_INTERACTIONS + top_5_bonds + top_5_angles
for metric in distributions.keys():
if metric not in relevant_columns:
continue
ref = crossdocked_distributions.get(metric)
# cur = distributions.get(metric)
cur = [x for x in distributions.get(metric) if not pd.isna(x)]
if ref is not None and cur is not None and len(cur) > 0:
try:
distance = wasserstein_distance(ref, cur)
except:
from pdb import set_trace; set_trace()
num_ref = len(ref)
num_cur = len(cur)
distances[f'WD.{metric}'] = distance
for metric in crossdocked_discrete_distributions.keys():
ref = crossdocked_discrete_distributions.get(metric)
cur = discrete_distributions.get(metric)
if ref is not None and cur is not None:
distance = jensenshannon(p=ref, q=cur)
num_ref = len(ref)
num_cur = len(cur)
distances[f'JS.{metric}'] = distance
dist_table = pd.DataFrame([distances])
dist_table.to_csv(Path(args.out_dir, 'metrics_distances.csv'), index=False)