Text Models
					Collection
				
Text generation models with less refusals
					โข 
				2 items
				โข 
				Updated
					
				โข
					
					1
Abliterated version of Mistral-Nemo-Instruct-2407, a Large Language Model (LLM) trained jointly by Mistral AI and NVIDIA that significantly outperforms existing models smaller or similar in size. The model's strongest refusal directions have been ablated via weight orthogonalization, but the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "natong19/Mistral-Nemo-Instruct-2407-abliterated"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_id)
conversation = [{"role": "user", "content": "Where's the capital of France?"}]
tool_use_prompt = tokenizer.apply_chat_template(
            conversation,
            tokenize=False,
            add_generation_prompt=True,
)
inputs = tokenizer(tool_use_prompt, return_tensors="pt", return_token_type_ids=False).to(device)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))
Evaluation framework: lm-evaluation-harness 0.4.2
| Benchmark | Mistral-Nemo-Instruct-2407 | Mistral-Nemo-Instruct-2407-abliterated | 
|---|---|---|
| ARC (25-shot) | 65.9 | 65.8 | 
| GSM8K (5-shot) | 76.2 | 75.2 | 
| HellaSwag (10-shot) | 84.3 | 84.3 | 
| MMLU (5-shot) | 68.4 | 68.8 | 
| TruthfulQA (0-shot) | 54.9 | 55.0 | 
| Winogrande (5-shot) | 82.2 | 82.6 |