AI & ML interests

We aim to unify the schema across many different biomedical NLP resources.

Recent Activity

Nymbo 
posted an update 10 days ago
view post
Post
1482
Two new tools added to the Nymbo/Tools MCP server, File_System and Shell_Exec. You can theoretically do basically anything with these two tools, and it should enable support for many Claude Skills.

GPT-5-Codex proves that for many cases, shell commands really are all you need, and Claude Skills seem to lean into this. The thing is, nothing about the design of Claude Skills actually restricts them to proprietary models!

# File_System

There's a new directory inside the repo called Filesystem, that's the agent's "root". It can perform the following actions : list, read, write, append, mkdir, move, copy, delete, info, help. It's able to keep this all within the scope of one tool call by making the Action field required and all other fields optional. Using a filesystem shouldn't require 15 different tools.

Files created in the public HF space live in the space's running container, and gets cleared when the space is restarted. When running the server locally, files are actually stored on disk.

# Shell_Exec

What good is a filesystem if you can't execute commands in that filesystem? This tool automatically detects if the server is running on Windows or Linux, and suggests using the appropriate shell (PowerShell/Bash). Both of these new tools require that the agent uses relative paths, rather than absolute paths. I could be convinced to back pedal on this.

# Closing Thoughts

The File_System and Shell_Exec tools aren't super polished yet, I'll continue to improve the agent's instructions and UX of using the new tools. Most of my testing was done with gpt-oss-20b and if it messes up, it gets the gist after one failed tool call. It should work perfectly fine for the GPU poor.
  • 1 reply
·
Nymbo 
posted an update 15 days ago
view post
Post
1676
I've made some improvements to my custom Deep_Research tool in the Nymbo/Tools MCP server. I've added a second LLM process and it still takes less than 1 minute to complete!

The original version of my Deep_Research tool would basically dump up to 50 fetched webpages onto the Researcher model (Qwen3-235B), with only a little bit of context shown from each page.

# New "Filterer" Process

The new process includes another LLM call before the researcher process. The Filterer (also Qwen3-235B) gets the query summary and the original 50 pages with low context, and decides which pages are most relevant to the research topic. The Filterer then outputs the URLs to the relevant pages, which are then re-fetched (with more context) and sent to the Researcher.

# Researcher Context

The Researcher now gets only the relevant webpages, then begins writing the report. When testing with 50 initial results, the researcher would often end up with 10-20 results of relevant context.

It still takes less than a minute to accomplish everything, thanks entirely to Cerebras inference. It now takes about 35-45 seconds to complete once the tool is run.

It's also worth noting that both the Filterer and Researcher now are provided the current time/date before they see the content, reducing hallucinations caused by knowledge cutoffs.
Nymbo 
posted an update 25 days ago
view post
Post
611
I have a few Sora-2 invites - 15509N
  • 1 reply
·
Tonic 
posted an update about 1 month ago
Nymbo 
posted an update about 1 month ago
view post
Post
1046
There's now a custom Deep_Research tool in my Nymbo/Tools MCP server! TL;DR: The agent using the tools writes a summary of your requests and up to five DuckDuckGo searches (up to 50 results). Each of the webpages found in the searches are then fetched and given to our researcher (Qwen3-235B-A22B-Thinking-2507). The researcher sees the summary, searched queries, and fetched links, then writes a thorough research report. The agent using the tool provides the user with a summary of the report and a link to download research_report.txt. The researcher's instructions are similar to some leaked Perplexity sys prompts.

# Deep_Research Tool

It accomplishes everything in under a minute so it doesn't hit MCP's 60 second timeout, mostly thanks to Cerebras. The only thing required to make this work is a HF_READ_TOKEN for inference.

The Deep_Research tool could certainly be improved. It still needs some sort of mechanism for sorting URLs based on importance (I've got some ideas but I don't want it to be the responsibility of the agent using the tool). I'll probably add a second researcher to filter out the bad sources before inferencing the big researcher. I'm hellbent on keeping this all within the scope of one tool call.

# More Fetch/Web Search Improvements

The Search_DuckDuckGo tool has been further enhanced. It now allows the agent to browse through all pages of results. The results also now include published date (if detected). It also now supports every DDG search types! Default DDG search is called text, but it can also now search by news, images, videos, and books.

The Fetch_Webpage tool now specifies how much of the page has been truncated, and cursor index, allowing it to pickup where it left off without re-consuming tokens. The model can now also choose to strip CSS selectors to remove excess noise, and there's a new URL Scraper mode that only returns URLs found on the full page.

More to come soon ~
Tonic 
posted an update about 1 month ago
view post
Post
670
COMPUTER CONTROL IS ON-DEVICE !

🏡🤖 78 % of EU smart-home owners DON’T trust cloud voice assistants.

So we killed the cloud.

Meet Exté: a palm-sized Android device that sees, hears & speaks your language - 100 % offline, 0 % data sent anywhere.

🔓 We submitted our technologies for consideration to the Liquid AI hackathon.

📊 Dataset: 79 k UI-action pairs on Hugging Face (largest Android-control corpus ever) Tonic/android-operator-episodes

⚡ Model: 98 % task accuracy, 678MB compressed , fits on existing android devices ! Tonic/l-android-control

🛤️ Experiment Tracker : check out the training on our TrackioApp Tonic/l-android-control

🎮 Live Model Demo: Upload an Android Screenshot and instructions to see the model in action ! Tonic/l-operator-demo



Built in a garage, funded by pre-orders, no VC. Now we’re scaling to 1 k installer units.

We’re giving 50 limited-edition prototypes to investors , installers & researchers who want to co-design the sovereign smart home.

👇 Drop “EUSKERA” in the comments if you want an invite, tag a friend who still thinks Alexa is “convenient,” and smash ♥️ if AI should belong to people - not servers.
Nymbo 
posted an update about 2 months ago
view post
Post
1013
I have a few updates to my MCP server I wanna share: New Memory tool, improvements to web search & speech generation.

# Memory_Manager Tool

We now have a Memory_Manager tool. Ask ChatGPT to write all its memories verbatim, then tell gpt-oss-20b to save each one using the tool, then take them anywhere! It stores memories in a memories.json file in the repo, no external database required.

The Memory_Manager tool is currently hidden from the HF space because it's intended for local use. It's enabled by providing a HF_READ_TOKEN in the env secrets, although it doesn't actually use the key for anything. There's probably a cleaner way of ensuring memory is only used locally, I'll come back to this.

# Fetch & Websearch

The Fetch_Webpage tool has been simplified a lot. It now converts the page to Markdown and returns the page with three length settings (Brief, Standard, Full). This is a lot more reliable than the old custom extraction method.

The Search_DuckDuckGo tool has a few small improvements. The input is easier for small models to get right, and the output is more readable.

# Speech Generation

I've added the remaining voices for Kokoro-82M, it now supports all 54 voices with all accents/languages.

I also removed the 30 second cap by making sure it computes all chunks in sequence, not just the first. I've tested it on outputs that are ~10 minutes long. Do note that when used as an MCP server, the tool will timeout after 1 minute, nothing I can do about that for right now.

# Other Thoughts

Lots of MCP use cases involve manipulating media (image editing, ASR, etc.). I've avoided adding tools like this so far for two reasons:

1. Most of these solutions would require assigning it a ZeroGPU slot.
2. The current process of uploading files like images to a Gradio space is still a bit rough. It's doable but requires additional tools.

Both of these points make it a bit painful for local usage. I'm open to suggestions for other tools that rely on text.
Tonic 
posted an update about 2 months ago
view post
Post
671
🙋🏻‍♂️ Hey there folks ,

Just wanted to annouce 🏭SmolFactory : it's the quickest and best way to finetune SmolLM3 and GPT-OSS-20B on huggingface !

Basicaly it's an app you can run on huggingface by duplicating the space and running your training directly on huggingface GPUs .

It will help you basically select datasets and models, fine tune your model , make an experiment tracker you can use on your mobile phone , push all your model card and even automatically make a demo for you on huggingface so you can directly test it out when it's done !

check out the blog to learn more : https://huggingface.co/blog/Tonic/smolfactory

or just try the app directly :
Tonic/SmolFactory

you can vibe check the cool models I made :
French SmolLM3 : Tonic/Petite-LLM-3
Medical GPT-OSS : Tonic/med-gpt-oss-20b-demo

check out the model cards :
multilingual reasoner (gpt-oss) - Tonic/gpt-oss-20b-multilingual-reasoner
med-gpt-oss : Tonic/med-gpt-oss-20b
petite-elle-l-aime : Tonic/petite-elle-L-aime-3-sft

github repo if you like command line more than gradio : https://github.com/josephrp/smolfactory

drop some likes on these links it's really much appreciated !

feedback and PRs are welcome !
Locutusque 
posted an update about 2 months ago
view post
Post
6935
🌲🍄 LLM Forest Orchestra: Turning Hidden States into Music

Hello everyone! I'm excited to introduce a new Space I've been developing called LLM Forest Orchestra. This project converts the hidden states and attention patterns of transformer models into layered MIDI compositions. The concept draws inspiration from mushrooms and mycelial networks in forests. Fungi create underground connections linking plants and trees, establishing what some call a "wood-wide web" where signals and nutrients travel. Researchers have discovered that these exchanges form patterns resembling rhythms and pulses. When translated appropriately, these patterns can become music.

Transformers operate through remarkably similar principles: tokens share signals via hidden states and attention heads. This Space transforms those invisible information flows into notes, chords, and rhythms, treating the model as a digital forest orchestra.

🎛 Features

* Two compute modes:
- Full model operates on a Hugging Face model (defaulting to unsloth/Qwen3-14B-Base).
- Mock latents provides a CPU-friendly option that simulates tensors for immediate experimentation.
* Musical controls: You can adjust scale selection, tempo grid, velocity range, instrument/role presets, and seed randomization.
* Output: The system generates .mid files compatible with DAWs and remixing workflows.

🌌 Why?

Neural networks already resemble unusual musical instruments: signals flow through them, patterns emerge organically, and careful observation reveals hidden melodies. This is analogous to the forest's secret orchestra of mushrooms and trees.

👉 Try it

Try the Space here: Locutusque/LLM-Forest-Orchestra. I'm excited to hear the sounds you can generate. Please share your created MIDIs or remixes in the comments. Let's explore how this hidden forest of transformers can sound together. 🌳🎶
Nymbo 
posted an update 2 months ago
view post
Post
1002
I built a general use MCP space ~ Fetch webpages, DuckDuckGo search, Python code execution, Kokoro TTS, Image Gen, Video Gen.

# Tools

1. Fetch webpage
2. Web search via DuckDuckGo (very concise, low excess context)
3. Python code executor
4. Kokoro-82M speech generation
5. Image Generation (use any model from HF Inference Providers)
6. Video Generation (use any model from HF Inference Providers)

The first four tools can be used without any API keys whatsoever. DDG search is free and the code execution and speech gen is done on CPU. Having a HF_READ_TOKEN in the env variables will show all tools. If there isn't a key present, The Image/Video Gen tools are hidden.

Nymbo/Tools
  • 1 reply
·
Nymbo 
posted an update 2 months ago
view post
Post
1024
Anyone using Jan-v1-4B for local MCP-based web search, I highly recommend you try out Intelligent-Internet/II-Search-4B

Very impressed with this lil guy and it deserves more downloads. It's based on the original version of Qwen3-4B but find that it questions reality way less often. Jan-v1 seems to think that everything it sees is synthetic data and constantly gaslights me
ImranzamanML 
posted an update 3 months ago
view post
Post
544
# Runway Aleph: The Future of AI Video Editing

Runway’s new **Aleph** model lets you *transform*, *edit*, and *generate* video from existing footage using just text prompts.
You can remove objects, change environments, restyle shots, alter lighting, and even create entirely new camera angles, all in one tool.

## Key Links

- 🔬 [Introducing Aleph (Runway Research)](https://runwayml.com/research/introducing-runway-aleph)
- 📖 [Aleph Prompting Guide (Runway Help Center)](https://help.runwayml.com/hc/en-us/articles/43277392678803-Aleph-Prompting-Guide)
- 🎬 [How to Transform Videos (Runway Academy)](https://academy.runwayml.com/aleph/how-to-transform-videos)
- 📰 [Gadgets360 Coverage](https://www.gadgets360.com/ai/news/runway-aleph-ai-video-editing-generation-model-post-production-unveiled-8965180)
- 🎥 [YouTube Demo: ALEPH by Runway](https://www.youtube.com/watch?v=PPerCtyIKwA)
- 📰 [Runway Alpha dataset]( Rapidata/text-2-video-human-preferences-runway-alpha)

## Prompt Tips

1. Be clear and specific (e.g., _“Change to snowy night, keep people unchanged”_).
2. Use action verbs like _add, remove, restyle, relight_.
3. Add reference images for style or lighting.


Aleph shifts AI video from *text-to-video* to *video-to-video*, making post-production faster, more creative, and more accessible than ever.
albertvillanova 
posted an update 3 months ago
view post
Post
3754
Latest smolagents release supports GPT-5: build agents that think, plan, and act.
⚡ Upgrade now and put GPT-5 to work!
albertvillanova 
posted an update 3 months ago
view post
Post
571
🚀 smolagents v1.21.0 is here!
Now with improved safety in the local Python executor: dunder calls are blocked!
⚠️ Still, not fully isolated: for untrusted code, use a remote executor instead: Docker, E2B, Wasm.
✨ Many bug fixes: more reliable code.
👉 https://github.com/huggingface/smolagents/releases/tag/v1.21.0