Instruction Residuals

This repository contains instruction residuals (delta weights) computed as the parameter-wise difference between google/gemma-3-12b-it and google/gemma-3-12b-pt.

Apply these residuals to the base model to reconstruct the instruction-tuned weights without retraining.

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from residuals import Residuals

base = AutoModelForCausalLM.from_pretrained("google/gemma-3-12b-pt")
tok = AutoTokenizer.from_pretrained("google/gemma-3-12b-pt")

res = Residuals.from_pretrained("residuals/gemma-3-12b")
res.apply(base, base_tokenizer=tok)

Provenance

  • Created at: 2025-10-25T18:51:41.834187+00:00
  • DType: float32
  • Parameters: 1066
  • Shapes hash: 9c53e73a967d7ab81405b64f3a4d8f48f2a09ebac740aba010a71abec2548555
  • Names hash: cc9f94a44626d0ab23b382b46a5f56203697a18e8f408301387e56c8a81aea51
  • Base model: google/gemma-3-12b-pt
  • Instruction model: google/gemma-3-12b-it

Files

  • model.safetensors: Serialized residual tensors (safetensors format).
  • (optional) model.safetensors.index.json + shard files model-00001-of-000N.safetensors, ... for multi-part weights.
  • config.json: Residuals metadata and provenance.
  • tokenizer files: Saved tokenizer for compatibility.

About this format

These are additive residuals (task vectors). Applying them to the base model's parameters reconstructs the instruction-tuned model.

Tools

Generated with the residuals Python package. Install via: pip install residuals.

Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for residuals/gemma-3-12b

Adapter
(73)
this model