Qwen2 Technical Report
Paper
•
2407.10671
•
Published
•
167
version 0.24 - 2025-04-05 01:49:20 UTC
(retraining
source-code |
pipeline-card)
Training dataset :
retrain-pipelines/func_calls_ds v0.23
(acf6174 -
2025-04-04 18:05:46 UTC) Base model :
unsloth/Qwen2.5-1.5B
(2d0a015 -
2025-02-06 02:32:14 UTC) 2407.10671The herein LoRa adapter can for instance be used as follows :
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import device, cuda
repo_id = "retrain-pipelines/function_caller_lora"
revision = "<model_revision_commit_hash>"
model = AutoModelForCausalLM.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
device = device("cuda" if cuda.is_available() else "cpu")
def generate_tool_calls_list(query, max_new_tokens=400) -> str:
formatted_query = tokenizer.chat_template.format(query, "")
inputs = tokenizer(formatted_query, return_tensors="pt").input_ids.to(device)
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return generated_text[len(formatted_query):].strip()
generate_tool_calls_list("Is 49 a perfect square ?")
retrain-pipelines
0.1.1 -
Run by Aurelien-Morgan-Bot -
UnslothFuncCallFlow - mf_run_id : 95