YAML Metadata
Error:
"widget" must be an array
Model description
This is a Logistic Regression trained on breast cancer dataset.
Intended uses & limitations
This model is trained for educational purposes.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|---|---|
| memory | |
| steps | [('scaler', StandardScaler()), ('model', LogisticRegression())] |
| verbose | False |
| scaler | StandardScaler() |
| model | LogisticRegression() |
| scaler__copy | True |
| scaler__with_mean | True |
| scaler__with_std | True |
| model__C | 1.0 |
| model__class_weight | |
| model__dual | False |
| model__fit_intercept | True |
| model__intercept_scaling | 1 |
| model__l1_ratio | |
| model__max_iter | 100 |
| model__multi_class | auto |
| model__n_jobs | |
| model__penalty | l2 |
| model__random_state | |
| model__solver | lbfgs |
| model__tol | 0.0001 |
| model__verbose | 0 |
| model__warm_start | False |
Model Plot
The model plot is below.
Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])Please rerun this cell to show the HTML repr or trust the notebook.Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])StandardScaler()
LogisticRegression()
Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|---|---|
| accuracy | 0.965035 |
| f1 score | 0.965035 |
How to Get Started with the Model
Use the code below to get started with the model.
import joblib
import json
import pandas as pd
clf = joblib.load(model.pkl)
with open("config.json") as f:
config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
Additional Content
Confusion Matrix
- Downloads last month
- -
