Upload . with huggingface_hub
Browse files- README.md +234 -0
- config.json +195 -0
- confusion_matrix.png +0 -0
- model.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sklearn
|
| 3 |
+
tags:
|
| 4 |
+
- sklearn
|
| 5 |
+
- skops
|
| 6 |
+
- tabular-classification
|
| 7 |
+
model_file: model.pkl
|
| 8 |
+
widget:
|
| 9 |
+
structuredData:
|
| 10 |
+
area_mean:
|
| 11 |
+
- 407.4
|
| 12 |
+
- 1335.0
|
| 13 |
+
- 428.0
|
| 14 |
+
area_se:
|
| 15 |
+
- 26.99
|
| 16 |
+
- 77.02
|
| 17 |
+
- 17.12
|
| 18 |
+
area_worst:
|
| 19 |
+
- 508.9
|
| 20 |
+
- 1946.0
|
| 21 |
+
- 546.3
|
| 22 |
+
compactness_mean:
|
| 23 |
+
- 0.05991
|
| 24 |
+
- 0.1076
|
| 25 |
+
- 0.069
|
| 26 |
+
compactness_se:
|
| 27 |
+
- 0.01065
|
| 28 |
+
- 0.01895
|
| 29 |
+
- 0.01727
|
| 30 |
+
compactness_worst:
|
| 31 |
+
- 0.1049
|
| 32 |
+
- 0.3055
|
| 33 |
+
- 0.188
|
| 34 |
+
concave points_mean:
|
| 35 |
+
- 0.02069
|
| 36 |
+
- 0.08941
|
| 37 |
+
- 0.01393
|
| 38 |
+
concave points_se:
|
| 39 |
+
- 0.009175
|
| 40 |
+
- 0.01232
|
| 41 |
+
- 0.006747
|
| 42 |
+
concave points_worst:
|
| 43 |
+
- 0.06544
|
| 44 |
+
- 0.2112
|
| 45 |
+
- 0.06913
|
| 46 |
+
concavity_mean:
|
| 47 |
+
- 0.02638
|
| 48 |
+
- 0.1527
|
| 49 |
+
- 0.02669
|
| 50 |
+
concavity_se:
|
| 51 |
+
- 0.01245
|
| 52 |
+
- 0.02681
|
| 53 |
+
- 0.02045
|
| 54 |
+
concavity_worst:
|
| 55 |
+
- 0.08105
|
| 56 |
+
- 0.4159
|
| 57 |
+
- 0.1471
|
| 58 |
+
fractal_dimension_mean:
|
| 59 |
+
- 0.05934
|
| 60 |
+
- 0.05478
|
| 61 |
+
- 0.06057
|
| 62 |
+
fractal_dimension_se:
|
| 63 |
+
- 0.001461
|
| 64 |
+
- 0.001711
|
| 65 |
+
- 0.002922
|
| 66 |
+
fractal_dimension_worst:
|
| 67 |
+
- 0.06487
|
| 68 |
+
- 0.07055
|
| 69 |
+
- 0.07993
|
| 70 |
+
perimeter_mean:
|
| 71 |
+
- 73.28
|
| 72 |
+
- 134.8
|
| 73 |
+
- 75.51
|
| 74 |
+
perimeter_se:
|
| 75 |
+
- 2.684
|
| 76 |
+
- 4.119
|
| 77 |
+
- 1.444
|
| 78 |
+
perimeter_worst:
|
| 79 |
+
- 83.12
|
| 80 |
+
- 166.8
|
| 81 |
+
- 85.22
|
| 82 |
+
radius_mean:
|
| 83 |
+
- 11.5
|
| 84 |
+
- 20.64
|
| 85 |
+
- 11.84
|
| 86 |
+
radius_se:
|
| 87 |
+
- 0.3927
|
| 88 |
+
- 0.6137
|
| 89 |
+
- 0.2222
|
| 90 |
+
radius_worst:
|
| 91 |
+
- 12.97
|
| 92 |
+
- 25.37
|
| 93 |
+
- 13.3
|
| 94 |
+
smoothness_mean:
|
| 95 |
+
- 0.09345
|
| 96 |
+
- 0.09446
|
| 97 |
+
- 0.08871
|
| 98 |
+
smoothness_se:
|
| 99 |
+
- 0.00638
|
| 100 |
+
- 0.006211
|
| 101 |
+
- 0.005517
|
| 102 |
+
smoothness_worst:
|
| 103 |
+
- 0.1183
|
| 104 |
+
- 0.1562
|
| 105 |
+
- 0.128
|
| 106 |
+
symmetry_mean:
|
| 107 |
+
- 0.1834
|
| 108 |
+
- 0.1571
|
| 109 |
+
- 0.1533
|
| 110 |
+
symmetry_se:
|
| 111 |
+
- 0.02292
|
| 112 |
+
- 0.01276
|
| 113 |
+
- 0.01616
|
| 114 |
+
symmetry_worst:
|
| 115 |
+
- 0.274
|
| 116 |
+
- 0.2689
|
| 117 |
+
- 0.2535
|
| 118 |
+
texture_mean:
|
| 119 |
+
- 18.45
|
| 120 |
+
- 17.35
|
| 121 |
+
- 18.94
|
| 122 |
+
texture_se:
|
| 123 |
+
- 0.8429
|
| 124 |
+
- 0.6575
|
| 125 |
+
- 0.8652
|
| 126 |
+
texture_worst:
|
| 127 |
+
- 22.46
|
| 128 |
+
- 23.17
|
| 129 |
+
- 24.99
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
# Model description
|
| 133 |
+
|
| 134 |
+
This is a Logistic Regression trained on breast cancer dataset.
|
| 135 |
+
|
| 136 |
+
## Intended uses & limitations
|
| 137 |
+
|
| 138 |
+
This model is trained for educational purposes.
|
| 139 |
+
|
| 140 |
+
## Training Procedure
|
| 141 |
+
|
| 142 |
+
### Hyperparameters
|
| 143 |
+
|
| 144 |
+
The model is trained with below hyperparameters.
|
| 145 |
+
|
| 146 |
+
<details>
|
| 147 |
+
<summary> Click to expand </summary>
|
| 148 |
+
|
| 149 |
+
| Hyperparameter | Value |
|
| 150 |
+
|--------------------------|-----------------------------------------------------------------|
|
| 151 |
+
| memory | |
|
| 152 |
+
| steps | [('scaler', StandardScaler()), ('model', LogisticRegression())] |
|
| 153 |
+
| verbose | False |
|
| 154 |
+
| scaler | StandardScaler() |
|
| 155 |
+
| model | LogisticRegression() |
|
| 156 |
+
| scaler__copy | True |
|
| 157 |
+
| scaler__with_mean | True |
|
| 158 |
+
| scaler__with_std | True |
|
| 159 |
+
| model__C | 1.0 |
|
| 160 |
+
| model__class_weight | |
|
| 161 |
+
| model__dual | False |
|
| 162 |
+
| model__fit_intercept | True |
|
| 163 |
+
| model__intercept_scaling | 1 |
|
| 164 |
+
| model__l1_ratio | |
|
| 165 |
+
| model__max_iter | 100 |
|
| 166 |
+
| model__multi_class | auto |
|
| 167 |
+
| model__n_jobs | |
|
| 168 |
+
| model__penalty | l2 |
|
| 169 |
+
| model__random_state | |
|
| 170 |
+
| model__solver | lbfgs |
|
| 171 |
+
| model__tol | 0.0001 |
|
| 172 |
+
| model__verbose | 0 |
|
| 173 |
+
| model__warm_start | False |
|
| 174 |
+
|
| 175 |
+
</details>
|
| 176 |
+
|
| 177 |
+
### Model Plot
|
| 178 |
+
|
| 179 |
+
The model plot is below.
|
| 180 |
+
|
| 181 |
+
<style>#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 {color: black;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 pre{padding: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable {background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-item {z-index: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:only-child::after {width: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-text-repr-fallback {display: none;}</style><div id="sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="76a688ab-e260-4cf7-a9f2-bf77900be27c" type="checkbox" ><label for="76a688ab-e260-4cf7-a9f2-bf77900be27c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6a4fcd10-6b63-40a6-a848-13717b9f7c82" type="checkbox" ><label for="6a4fcd10-6b63-40a6-a848-13717b9f7c82" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="974bd93d-19db-4a61-b7ff-66d07e5bbadb" type="checkbox" ><label for="974bd93d-19db-4a61-b7ff-66d07e5bbadb" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
|
| 182 |
+
|
| 183 |
+
## Evaluation Results
|
| 184 |
+
|
| 185 |
+
You can find the details about evaluation process and the evaluation results.
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
| Metric | Value |
|
| 190 |
+
|----------|----------|
|
| 191 |
+
| accuracy | 0.965035 |
|
| 192 |
+
| f1 score | 0.965035 |
|
| 193 |
+
|
| 194 |
+
# How to Get Started with the Model
|
| 195 |
+
|
| 196 |
+
Use the code below to get started with the model.
|
| 197 |
+
|
| 198 |
+
```python
|
| 199 |
+
import joblib
|
| 200 |
+
import json
|
| 201 |
+
import pandas as pd
|
| 202 |
+
clf = joblib.load(model.pkl)
|
| 203 |
+
with open("config.json") as f:
|
| 204 |
+
config = json.load(f)
|
| 205 |
+
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# Model Card Authors
|
| 210 |
+
|
| 211 |
+
This model card is written by following authors:
|
| 212 |
+
|
| 213 |
+
[More Information Needed]
|
| 214 |
+
|
| 215 |
+
# Model Card Contact
|
| 216 |
+
|
| 217 |
+
You can contact the model card authors through following channels:
|
| 218 |
+
[More Information Needed]
|
| 219 |
+
|
| 220 |
+
# Citation
|
| 221 |
+
|
| 222 |
+
Below you can find information related to citation.
|
| 223 |
+
|
| 224 |
+
**BibTeX:**
|
| 225 |
+
```
|
| 226 |
+
[More Information Needed]
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# Additional Content
|
| 231 |
+
|
| 232 |
+
## Confusion Matrix
|
| 233 |
+
|
| 234 |
+

|
config.json
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"sklearn": {
|
| 3 |
+
"columns": [
|
| 4 |
+
"radius_mean",
|
| 5 |
+
"texture_mean",
|
| 6 |
+
"perimeter_mean",
|
| 7 |
+
"area_mean",
|
| 8 |
+
"smoothness_mean",
|
| 9 |
+
"compactness_mean",
|
| 10 |
+
"concavity_mean",
|
| 11 |
+
"concave points_mean",
|
| 12 |
+
"symmetry_mean",
|
| 13 |
+
"fractal_dimension_mean",
|
| 14 |
+
"radius_se",
|
| 15 |
+
"texture_se",
|
| 16 |
+
"perimeter_se",
|
| 17 |
+
"area_se",
|
| 18 |
+
"smoothness_se",
|
| 19 |
+
"compactness_se",
|
| 20 |
+
"concavity_se",
|
| 21 |
+
"concave points_se",
|
| 22 |
+
"symmetry_se",
|
| 23 |
+
"fractal_dimension_se",
|
| 24 |
+
"radius_worst",
|
| 25 |
+
"texture_worst",
|
| 26 |
+
"perimeter_worst",
|
| 27 |
+
"area_worst",
|
| 28 |
+
"smoothness_worst",
|
| 29 |
+
"compactness_worst",
|
| 30 |
+
"concavity_worst",
|
| 31 |
+
"concave points_worst",
|
| 32 |
+
"symmetry_worst",
|
| 33 |
+
"fractal_dimension_worst"
|
| 34 |
+
],
|
| 35 |
+
"environment": [
|
| 36 |
+
"scikit-learn"
|
| 37 |
+
],
|
| 38 |
+
"example_input": {
|
| 39 |
+
"area_mean": [
|
| 40 |
+
407.4,
|
| 41 |
+
1335.0,
|
| 42 |
+
428.0
|
| 43 |
+
],
|
| 44 |
+
"area_se": [
|
| 45 |
+
26.99,
|
| 46 |
+
77.02,
|
| 47 |
+
17.12
|
| 48 |
+
],
|
| 49 |
+
"area_worst": [
|
| 50 |
+
508.9,
|
| 51 |
+
1946.0,
|
| 52 |
+
546.3
|
| 53 |
+
],
|
| 54 |
+
"compactness_mean": [
|
| 55 |
+
0.05991,
|
| 56 |
+
0.1076,
|
| 57 |
+
0.069
|
| 58 |
+
],
|
| 59 |
+
"compactness_se": [
|
| 60 |
+
0.01065,
|
| 61 |
+
0.01895,
|
| 62 |
+
0.01727
|
| 63 |
+
],
|
| 64 |
+
"compactness_worst": [
|
| 65 |
+
0.1049,
|
| 66 |
+
0.3055,
|
| 67 |
+
0.188
|
| 68 |
+
],
|
| 69 |
+
"concave points_mean": [
|
| 70 |
+
0.02069,
|
| 71 |
+
0.08941,
|
| 72 |
+
0.01393
|
| 73 |
+
],
|
| 74 |
+
"concave points_se": [
|
| 75 |
+
0.009175,
|
| 76 |
+
0.01232,
|
| 77 |
+
0.006747
|
| 78 |
+
],
|
| 79 |
+
"concave points_worst": [
|
| 80 |
+
0.06544,
|
| 81 |
+
0.2112,
|
| 82 |
+
0.06913
|
| 83 |
+
],
|
| 84 |
+
"concavity_mean": [
|
| 85 |
+
0.02638,
|
| 86 |
+
0.1527,
|
| 87 |
+
0.02669
|
| 88 |
+
],
|
| 89 |
+
"concavity_se": [
|
| 90 |
+
0.01245,
|
| 91 |
+
0.02681,
|
| 92 |
+
0.02045
|
| 93 |
+
],
|
| 94 |
+
"concavity_worst": [
|
| 95 |
+
0.08105,
|
| 96 |
+
0.4159,
|
| 97 |
+
0.1471
|
| 98 |
+
],
|
| 99 |
+
"fractal_dimension_mean": [
|
| 100 |
+
0.05934,
|
| 101 |
+
0.05478,
|
| 102 |
+
0.06057
|
| 103 |
+
],
|
| 104 |
+
"fractal_dimension_se": [
|
| 105 |
+
0.001461,
|
| 106 |
+
0.001711,
|
| 107 |
+
0.002922
|
| 108 |
+
],
|
| 109 |
+
"fractal_dimension_worst": [
|
| 110 |
+
0.06487,
|
| 111 |
+
0.07055,
|
| 112 |
+
0.07993
|
| 113 |
+
],
|
| 114 |
+
"perimeter_mean": [
|
| 115 |
+
73.28,
|
| 116 |
+
134.8,
|
| 117 |
+
75.51
|
| 118 |
+
],
|
| 119 |
+
"perimeter_se": [
|
| 120 |
+
2.684,
|
| 121 |
+
4.119,
|
| 122 |
+
1.444
|
| 123 |
+
],
|
| 124 |
+
"perimeter_worst": [
|
| 125 |
+
83.12,
|
| 126 |
+
166.8,
|
| 127 |
+
85.22
|
| 128 |
+
],
|
| 129 |
+
"radius_mean": [
|
| 130 |
+
11.5,
|
| 131 |
+
20.64,
|
| 132 |
+
11.84
|
| 133 |
+
],
|
| 134 |
+
"radius_se": [
|
| 135 |
+
0.3927,
|
| 136 |
+
0.6137,
|
| 137 |
+
0.2222
|
| 138 |
+
],
|
| 139 |
+
"radius_worst": [
|
| 140 |
+
12.97,
|
| 141 |
+
25.37,
|
| 142 |
+
13.3
|
| 143 |
+
],
|
| 144 |
+
"smoothness_mean": [
|
| 145 |
+
0.09345,
|
| 146 |
+
0.09446,
|
| 147 |
+
0.08871
|
| 148 |
+
],
|
| 149 |
+
"smoothness_se": [
|
| 150 |
+
0.00638,
|
| 151 |
+
0.006211,
|
| 152 |
+
0.005517
|
| 153 |
+
],
|
| 154 |
+
"smoothness_worst": [
|
| 155 |
+
0.1183,
|
| 156 |
+
0.1562,
|
| 157 |
+
0.128
|
| 158 |
+
],
|
| 159 |
+
"symmetry_mean": [
|
| 160 |
+
0.1834,
|
| 161 |
+
0.1571,
|
| 162 |
+
0.1533
|
| 163 |
+
],
|
| 164 |
+
"symmetry_se": [
|
| 165 |
+
0.02292,
|
| 166 |
+
0.01276,
|
| 167 |
+
0.01616
|
| 168 |
+
],
|
| 169 |
+
"symmetry_worst": [
|
| 170 |
+
0.274,
|
| 171 |
+
0.2689,
|
| 172 |
+
0.2535
|
| 173 |
+
],
|
| 174 |
+
"texture_mean": [
|
| 175 |
+
18.45,
|
| 176 |
+
17.35,
|
| 177 |
+
18.94
|
| 178 |
+
],
|
| 179 |
+
"texture_se": [
|
| 180 |
+
0.8429,
|
| 181 |
+
0.6575,
|
| 182 |
+
0.8652
|
| 183 |
+
],
|
| 184 |
+
"texture_worst": [
|
| 185 |
+
22.46,
|
| 186 |
+
23.17,
|
| 187 |
+
24.99
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
"model": {
|
| 191 |
+
"file": "model.pkl"
|
| 192 |
+
},
|
| 193 |
+
"task": "tabular-classification"
|
| 194 |
+
}
|
| 195 |
+
}
|
confusion_matrix.png
ADDED
|
model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19e7603c2a00866878c72a1d61f9adc0aaa687f0ba70be71ecdd3e7f610ae9d4
|
| 3 |
+
size 3374
|