SentenceTransformer based on answerdotai/ModernBERT-large
	
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-large on the korean_nli_dataset_reranker_v1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
	
		
	
	
		Model Details
	
	
		
	
	
		Model Description
	
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-large 
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: ko
	
		
	
	
		Model Sources
	
	
		
	
	
		Full Model Architecture
	
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
	
		
	
	
		Evaluation
	
	
		
	
	
		Metrics
	
	
		
	
	
		AutoRAG Retrieval
	
	
		
| Metrics | sigridjineth/ModernBERT-korean-large-preview (241225) | Alibaba-NLP/gte-multilingual-base | answerdotai/ModernBERT-large | 
		
| NDCG@10 | 0.72503 | 0.77108 | 0.0 | 
| Recall@10 | 0.87719 | 0.93860 | 0.0 | 
| Precision@1 | 0.57018 | 0.59649 | 0.0 | 
| NDCG@100 | 0.74543 | 0.78411 | 0.01565 | 
| Recall@100 | 0.98246 | 1.0 | 0.09649 | 
| Recall@1000 | 1.0 | 1.0 | 1.0 | 
	
 
	
		
	
	
		Triplet
	
	
		
| Metric | Value | 
		
| cosine_accuracy | 0.877 | 
	
 
	
		
	
	
		Training Details
	
	
		
	
	
		Training Dataset
	
	
		
	
	
		Training Logs
	
	
		
| Epoch | Step | dev-eval_cosine_accuracy | 
		
| 0 | 0 | 0.331 | 
| 4.8783 | 170 | 0.877 | 
	
 
	
		
	
	
		Framework Versions
	
- Python: 3.11.9
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
	
		
	
	
		Citation
	
	
		
	
	
		BibTeX
	
	
		
	
	
		Sentence Transformers
	
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
	
		
	
	
		CachedMultipleNegativesRankingLoss
	
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}