Spaces:
Sleeping
Sleeping
| # import torch | |
| # import librosa | |
| # from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
| # # Cấu hình | |
| # # MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" | |
| # MODEL_ID = "facebook/wav2vec2-large-xlsr-53" | |
| # AUDIO_FILE_PATH = "./hello_how_are_you_today.wav" # Thay đổi đường dẫn này | |
| # # Load model và processor | |
| # processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) | |
| # model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
| # def transcribe_audio_file(audio_path): | |
| # """ | |
| # Chuyển đổi file audio thành text sử dụng Wav2Vec2 | |
| # """ | |
| # # Đọc file audio | |
| # try: | |
| # speech_array, sampling_rate = librosa.load(audio_path, sr=16_000) | |
| # print(f"Đã load audio file: {audio_path}") | |
| # print(f"Độ dài audio: {len(speech_array)/16_000:.2f} giây") | |
| # except Exception as e: | |
| # print(f"Lỗi khi đọc file audio: {e}") | |
| # return None | |
| # # Tiền xử lý | |
| # inputs = processor( | |
| # speech_array, | |
| # sampling_rate=16_000, | |
| # return_tensors="pt", | |
| # padding=True | |
| # ) | |
| # # Dự đoán | |
| # with torch.no_grad(): | |
| # logits = model( | |
| # inputs.input_values, | |
| # attention_mask=inputs.attention_mask | |
| # ).logits | |
| # # Decode kết quả | |
| # predicted_ids = torch.argmax(logits, dim=-1) | |
| # predicted_sentence = processor.batch_decode(predicted_ids)[0] | |
| # return predicted_sentence | |
| # # Test với file audio của bạn | |
| # if __name__ == "__main__": | |
| # # Thay đổi đường dẫn đến file audio của bạn | |
| # audio_files = [ | |
| # "./hello_world.wav", # Thay đổi tên file này | |
| # # "another_file.mp3", # Có thể thêm nhiều file | |
| # ] | |
| # for audio_file in audio_files: | |
| # print("=" * 80) | |
| # print(f"Đang xử lý: {audio_file}") | |
| # print("=" * 80) | |
| # prediction = transcribe_audio_file(audio_file) | |
| # if prediction: | |
| # print(f"Kết quả nhận dạng: {prediction}") | |
| # else: | |
| # print("Không thể xử lý file này") | |
| # print() | |
| # # Phiên bản đơn giản hơn - chỉ cần thay đổi đường dẫn file | |
| # def quick_transcribe(audio_path): | |
| # """Phiên bản nhanh để transcribe một file""" | |
| # speech_array, _ = librosa.load(audio_path, sr=16_000) | |
| # inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) | |
| # with torch.no_grad(): | |
| # logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
| # predicted_ids = torch.argmax(logits, dim=-1) | |
| # return processor.batch_decode(predicted_ids)[0] | |
| # # Sử dụng nhanh: | |
| # result = quick_transcribe("./hello_how_are_you_today.wav") | |
| # print(result) | |
| import torch | |
| from transformers import ( | |
| AutoModelForCTC, | |
| AutoProcessor, | |
| Wav2Vec2Processor, | |
| Wav2Vec2ForCTC, | |
| ) | |
| import onnxruntime as rt | |
| import numpy as np | |
| import librosa | |
| import warnings | |
| import os | |
| warnings.filterwarnings("ignore") | |
| # Available Wave2Vec2 models | |
| WAVE2VEC2_MODELS = { | |
| "english_large": "jonatasgrosman/wav2vec2-large-xlsr-53-english", | |
| "multilingual": "facebook/wav2vec2-large-xlsr-53", | |
| "english_960h": "facebook/wav2vec2-large-960h-lv60-self", | |
| "base_english": "facebook/wav2vec2-base-960h", | |
| "large_english": "facebook/wav2vec2-large-960h", | |
| "xlsr_english": "jonatasgrosman/wav2vec2-large-xlsr-53-english", | |
| "xlsr_multilingual": "facebook/wav2vec2-large-xlsr-53" | |
| } | |
| # Default model | |
| DEFAULT_MODEL = "jonatasgrosman/wav2vec2-large-xlsr-53-english" | |
| def get_available_models(): | |
| """Return dictionary of available Wave2Vec2 models""" | |
| return WAVE2VEC2_MODELS.copy() | |
| def get_model_name(model_key=None): | |
| """ | |
| Get model name from key or return default | |
| Args: | |
| model_key: Key from WAVE2VEC2_MODELS or full model name | |
| Returns: | |
| str: Full model name | |
| """ | |
| if model_key is None: | |
| return DEFAULT_MODEL | |
| if model_key in WAVE2VEC2_MODELS: | |
| return WAVE2VEC2_MODELS[model_key] | |
| # If it's already a full model name, return as is | |
| return model_key | |
| class Wave2Vec2Inference: | |
| def __init__(self, model_name=None, use_gpu=True): | |
| # Get the actual model name using helper function | |
| self.model_name = get_model_name(model_name) | |
| # Auto-detect device | |
| if use_gpu: | |
| if torch.backends.mps.is_available(): | |
| self.device = "mps" | |
| elif torch.cuda.is_available(): | |
| self.device = "cuda" | |
| else: | |
| self.device = "cpu" | |
| else: | |
| self.device = "cpu" | |
| print(f"Using device: {self.device}") | |
| print(f"Loading model: {self.model_name}") | |
| # Check if model is XLSR and use appropriate processor/model | |
| is_xlsr = "xlsr" in self.model_name.lower() | |
| if is_xlsr: | |
| print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model") | |
| self.processor = Wav2Vec2Processor.from_pretrained(self.model_name) | |
| self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name) | |
| else: | |
| print("Using AutoProcessor and AutoModelForCTC") | |
| self.processor = AutoProcessor.from_pretrained(self.model_name) | |
| self.model = AutoModelForCTC.from_pretrained(self.model_name) | |
| self.model.to(self.device) | |
| self.model.eval() | |
| # Disable gradients for inference | |
| torch.set_grad_enabled(False) | |
| def buffer_to_text(self, audio_buffer): | |
| if len(audio_buffer) == 0: | |
| return "" | |
| # Convert to tensor | |
| if isinstance(audio_buffer, np.ndarray): | |
| audio_tensor = torch.from_numpy(audio_buffer).float() | |
| else: | |
| audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32) | |
| # Process audio | |
| inputs = self.processor( | |
| audio_tensor, | |
| sampling_rate=16_000, | |
| return_tensors="pt", | |
| padding=True, | |
| ) | |
| # Move to device | |
| input_values = inputs.input_values.to(self.device) | |
| attention_mask = ( | |
| inputs.attention_mask.to(self.device) | |
| if "attention_mask" in inputs | |
| else None | |
| ) | |
| # Inference | |
| with torch.no_grad(): | |
| if attention_mask is not None: | |
| logits = self.model(input_values, attention_mask=attention_mask).logits | |
| else: | |
| logits = self.model(input_values).logits | |
| # Decode | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| if self.device != "cpu": | |
| predicted_ids = predicted_ids.cpu() | |
| transcription = self.processor.batch_decode(predicted_ids)[0] | |
| return transcription.lower().strip() | |
| def file_to_text(self, filename): | |
| try: | |
| audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32) | |
| return self.buffer_to_text(audio_input) | |
| except Exception as e: | |
| print(f"Error loading audio file {filename}: {e}") | |
| return "" | |
| class Wave2Vec2ONNXInference: | |
| def __init__(self, model_name=None, onnx_path=None, use_gpu=True): | |
| # Get the actual model name using helper function | |
| self.model_name = get_model_name(model_name) | |
| print(f"Loading ONNX model: {self.model_name}") | |
| # Always use Wav2Vec2Processor for ONNX (works for all models) | |
| self.processor = Wav2Vec2Processor.from_pretrained(self.model_name) | |
| # Setup ONNX Runtime | |
| options = rt.SessionOptions() | |
| options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL | |
| # Choose providers based on GPU availability | |
| providers = [] | |
| if use_gpu and rt.get_available_providers(): | |
| if "CUDAExecutionProvider" in rt.get_available_providers(): | |
| providers.append("CUDAExecutionProvider") | |
| providers.append("CPUExecutionProvider") | |
| self.model = rt.InferenceSession(onnx_path, options, providers=providers) | |
| self.input_name = self.model.get_inputs()[0].name | |
| print(f"ONNX model loaded with providers: {self.model.get_providers()}") | |
| def buffer_to_text(self, audio_buffer): | |
| if len(audio_buffer) == 0: | |
| return "" | |
| # Convert to tensor | |
| if isinstance(audio_buffer, np.ndarray): | |
| audio_tensor = torch.from_numpy(audio_buffer).float() | |
| else: | |
| audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32) | |
| # Process audio | |
| inputs = self.processor( | |
| audio_tensor, | |
| sampling_rate=16_000, | |
| return_tensors="np", | |
| padding=True, | |
| ) | |
| # ONNX inference | |
| input_values = inputs.input_values.astype(np.float32) | |
| onnx_outputs = self.model.run(None, {self.input_name: input_values})[0] | |
| # Decode | |
| prediction = np.argmax(onnx_outputs, axis=-1) | |
| transcription = self.processor.decode(prediction.squeeze().tolist()) | |
| return transcription.lower().strip() | |
| def file_to_text(self, filename): | |
| try: | |
| audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32) | |
| return self.buffer_to_text(audio_input) | |
| except Exception as e: | |
| print(f"Error loading audio file {filename}: {e}") | |
| return "" | |
| def convert_to_onnx(model_id_or_path, onnx_model_name): | |
| """Convert PyTorch model to ONNX format""" | |
| print(f"Converting {model_id_or_path} to ONNX...") | |
| model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path) | |
| model.eval() | |
| # Create dummy input | |
| audio_len = 250000 | |
| dummy_input = torch.randn(1, audio_len, requires_grad=True) | |
| torch.onnx.export( | |
| model, | |
| dummy_input, | |
| onnx_model_name, | |
| export_params=True, | |
| opset_version=14, | |
| do_constant_folding=True, | |
| input_names=["input"], | |
| output_names=["output"], | |
| dynamic_axes={ | |
| "input": {1: "audio_len"}, | |
| "output": {1: "audio_len"}, | |
| }, | |
| ) | |
| print(f"ONNX model saved to: {onnx_model_name}") | |
| def quantize_onnx_model(onnx_model_path, quantized_model_path): | |
| """Quantize ONNX model for faster inference""" | |
| print("Starting quantization...") | |
| from onnxruntime.quantization import quantize_dynamic, QuantType | |
| quantize_dynamic( | |
| onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8 | |
| ) | |
| print(f"Quantized model saved to: {quantized_model_path}") | |
| def export_to_onnx(model_name, quantize=False): | |
| """ | |
| Export model to ONNX format with optional quantization | |
| Args: | |
| model_name: HuggingFace model name | |
| quantize: Whether to also create quantized version | |
| Returns: | |
| tuple: (onnx_path, quantized_path or None) | |
| """ | |
| onnx_filename = f"{model_name.split('/')[-1]}.onnx" | |
| convert_to_onnx(model_name, onnx_filename) | |
| quantized_path = None | |
| if quantize: | |
| quantized_path = onnx_filename.replace(".onnx", ".quantized.onnx") | |
| quantize_onnx_model(onnx_filename, quantized_path) | |
| return onnx_filename, quantized_path | |
| def create_inference( | |
| model_name=None, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False | |
| ): | |
| """ | |
| Create optimized inference instance | |
| Args: | |
| model_name: Model key from WAVE2VEC2_MODELS or full HuggingFace model name (default: uses DEFAULT_MODEL) | |
| use_onnx: Whether to use ONNX runtime | |
| onnx_path: Path to ONNX model file | |
| use_gpu: Whether to use GPU if available | |
| use_onnx_quantize: Whether to use quantized ONNX model | |
| Returns: | |
| Inference instance | |
| """ | |
| # Get the actual model name | |
| actual_model_name = get_model_name(model_name) | |
| if use_onnx: | |
| if not onnx_path or not os.path.exists(onnx_path): | |
| # Convert to ONNX if path not provided or doesn't exist | |
| onnx_filename = f"{actual_model_name.split('/')[-1]}.onnx" | |
| convert_to_onnx(actual_model_name, onnx_filename) | |
| onnx_path = onnx_filename | |
| if use_onnx_quantize: | |
| quantized_path = onnx_path.replace(".onnx", ".quantized.onnx") | |
| if not os.path.exists(quantized_path): | |
| quantize_onnx_model(onnx_path, quantized_path) | |
| onnx_path = quantized_path | |
| print(f"Using ONNX model: {onnx_path}") | |
| return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu) | |
| else: | |
| print("Using PyTorch model") | |
| return Wave2Vec2Inference(model_name, use_gpu) | |
| if __name__ == "__main__": | |
| import time | |
| # Display available models | |
| print("Available Wave2Vec2 models:") | |
| for key, model_name in get_available_models().items(): | |
| print(f" {key}: {model_name}") | |
| print(f"\nDefault model: {DEFAULT_MODEL}") | |
| print() | |
| # Test with different models | |
| test_models = ["english_large", "multilingual", "english_960h"] | |
| test_file = "./hello_how_are_you_today.wav" | |
| if not os.path.exists(test_file): | |
| print(f"Test file {test_file} not found. Please provide a valid audio file.") | |
| print("Creating example usage without actual file...") | |
| # Example usage without file | |
| print("\n=== Example Usage ===") | |
| # Using default model | |
| print("1. Using default model:") | |
| asr_default = create_inference() | |
| print(f" Model loaded: {asr_default.model_name}") | |
| # Using model key | |
| print("\n2. Using model key 'english_large':") | |
| asr_key = create_inference("english_large") | |
| print(f" Model loaded: {asr_key.model_name}") | |
| # Using full model name | |
| print("\n3. Using full model name:") | |
| asr_full = create_inference("facebook/wav2vec2-base-960h") | |
| print(f" Model loaded: {asr_full.model_name}") | |
| exit(0) | |
| # Test different model configurations | |
| for model_key in test_models: | |
| print(f"\n=== Testing model: {model_key} ===") | |
| # Test different configurations | |
| configs = [ | |
| {"use_onnx": False, "use_gpu": True}, | |
| {"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False}, | |
| ] | |
| for config in configs: | |
| print(f"\nConfig: {config}") | |
| # Create inference instance with model selection | |
| asr = create_inference(model_key, **config) | |
| # Warm up | |
| asr.file_to_text(test_file) | |
| # Test performance | |
| times = [] | |
| for i in range(3): | |
| start_time = time.time() | |
| text = asr.file_to_text(test_file) | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| times.append(execution_time) | |
| print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...") | |
| avg_time = sum(times) / len(times) | |
| print(f"Average time: {avg_time:.3f}s") | |