Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import list_models | |
| import plotly.express as px | |
| def get_plots(task): | |
| #TO DO : hover text with energy efficiency number, parameters | |
| task_df= pd.read_csv('data/energy/'+task) | |
| params_df = pd.read_csv('data/params/'+task) | |
| all_df = pd.merge(task_df, params_df, on='Link')) | |
| all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
| all_df = task_df.sort_values(by=['Total GPU Energy (Wh)']) | |
| all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"]) | |
| fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"}) | |
| #fig.update_traces(mode="markers+lines", hovertemplate=None) | |
| fig.update_layout(hovermode="y") | |
| return fig | |
| def get_model_names(task_data): | |
| #TODO: add link to results in model card of each model | |
| task_df= pd.read_csv(task_data) | |
| model_names = task_df[['model']] | |
| return model_names | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown( | |
| """# Energy Star Leaderboard | |
| TODO """ | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem("Text Generation 💬"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.Plot(get_plots('text_generation.csv')) | |
| with gr.Column(): | |
| table = gr.Dataframe(get_model_names('text_generation.csv')) | |
| with gr.TabItem("Image Generation 📷"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.Plot(get_plots('image_generation.csv')) | |
| with gr.Column(): | |
| table = gr.Dataframe(get_model_names('image_generation.csv')) | |
| with gr.TabItem("Text Classification 🎭"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.Plot(get_plots('text_classification.csv')) | |
| with gr.Column(): | |
| table = gr.Dataframe(get_model_names('text_classification.csv')) | |
| with gr.TabItem("Image Classification 🖼️"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.Plot(get_plots('image_classification.csv')) | |
| with gr.Column(): | |
| table = gr.Dataframe(get_model_names('image_classification.csv')) | |
| with gr.TabItem("Extractive QA ❔"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.Plot(get_plots('question_answering.csv')) | |
| with gr.Column(): | |
| table = gr.Dataframe(get_model_names('question_answering.csv')) | |
| demo.launch() | |