image_utilities_mcp / agent_test.py
JuanjoSG5
test: testing agent
76d4323
raw
history blame
15.2 kB
import asyncio
import os
import json
import base64
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
from io import BytesIO
from PIL import Image
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
load_dotenv()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
class MCPClientWrapper:
def __init__(self):
self.session = None
self.exit_stack = None
self.mistral = ChatOpenAI(model_name="mistralai/mistral-small", temperature=0.7, openai_api_key=os.getenv("OPENROUTER_API_KEY"), openai_api_base=os.getenv("OPENROUTER_API_BASE_URL"))
self.tools = []
def connect(self, server_path: str) -> str:
return loop.run_until_complete(self._connect(server_path))
async def _connect(self, server_path: str) -> str:
if self.exit_stack:
await self.exit_stack.aclose()
self.exit_stack = AsyncExitStack()
is_python = server_path.endswith('.py')
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_path],
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
response = await self.session.list_tools()
self.tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
tool_names = [tool["name"] for tool in self.tools]
return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
if not self.session:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please connect to an MCP server first."}
], gr.Textbox(value="")
new_messages = loop.run_until_complete(self._process_query(message, history))
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
claude_messages = []
for msg in history:
if isinstance(msg, ChatMessage):
role, content = msg.role, msg.content
else:
role, content = msg.get("role"), msg.get("content")
if role in ["user", "assistant", "system"]:
claude_messages.append({"role": role, "content": content})
claude_messages.append({"role": "user", "content": message})
response = self.mistral.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
result_messages = []
for content in response.content:
if content.type == 'text':
result_messages.append({
"role": "assistant",
"content": content.text
})
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
result_messages.append({
"role": "assistant",
"content": f"I'll use the {tool_name} tool to help answer your question.",
"metadata": {
"title": f"Using tool: {tool_name}",
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
"status": "pending",
"id": f"tool_call_{tool_name}"
}
})
result_messages.append({
"role": "assistant",
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
"metadata": {
"parent_id": f"tool_call_{tool_name}",
"id": f"params_{tool_name}",
"title": "Tool Parameters"
}
})
result = await self.session.call_tool(tool_name, tool_args)
if result_messages and "metadata" in result_messages[-2]:
result_messages[-2]["metadata"]["status"] = "done"
result_messages.append({
"role": "assistant",
"content": "Here are the results from the tool:",
"metadata": {
"title": f"Tool Result for {tool_name}",
"status": "done",
"id": f"result_{tool_name}"
}
})
result_content = result.content
if isinstance(result_content, list):
result_content = "\n".join(str(item) for item in result_content)
try:
result_json = json.loads(result_content)
if isinstance(result_json, dict) and "type" in result_json:
if result_json["type"] == "image" and "url" in result_json:
result_messages.append({
"role": "assistant",
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"image_{tool_name}",
"title": "Generated Image"
}
})
else:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
except:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
next_response = self.mistral.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
)
if next_response.content and next_response.content[0].type == 'text':
result_messages.append({
"role": "assistant",
"content": next_response.content[0].text
})
return result_messages
# New methods for image processing
def image_to_base64(self, image):
"""Convert PIL image to base64 string"""
if image is None:
return None
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
async def process_image(self, image, operation, target_format=None, width=None, height=None):
"""Process an image using MCP tools"""
if not self.session:
return None, "Please connect to an MCP server first."
if image is None:
return None, "No image provided."
try:
img_base64 = self.image_to_base64(image)
if operation == "Remove Background":
result = await self.session.call_tool("remove_background_from_url", {"url": img_base64})
elif operation == "Change Format":
if not target_format:
return None, "Please select a target format."
result = await self.session.call_tool("change_format", {
"image_base64": img_base64,
"target_format": target_format.lower()
})
elif operation == "Resize Image":
if not width or not height:
return None, "Please provide width and height."
result = await self.session.call_tool("resize_image", {
"image_base64": img_base64,
"width": int(width),
"height": int(height)
})
elif operation == "Visualize Image":
result = await self.session.call_tool("visualize_base64_image", {"image_base64": img_base64})
else:
return None, "Unknown operation."
# Process the result
result_content = result.content
if isinstance(result_content, str):
try:
result_data = json.loads(result_content)
if "image_base64" in result_data:
# Convert result base64 back to image
img_data = base64.b64decode(result_data["image_base64"])
result_img = Image.open(BytesIO(img_data))
return result_img, "Image processed successfully."
else:
return None, f"Unexpected result format: {result_content}"
except json.JSONDecodeError:
return None, f"Error decoding result: {result_content}"
else:
return None, f"Unexpected result type: {type(result_content)}"
except Exception as e:
return None, f"Error processing image: {str(e)}"
client = MCPClientWrapper()
def gradio_interface():
with gr.Blocks(title="MCP Assistant") as demo:
gr.Markdown("# MCP Assistant")
gr.Markdown("Connect to your MCP server to chat or process images")
with gr.Row(equal_height=True):
with gr.Column(scale=4):
server_path = gr.Textbox(
label="Server Script Path",
placeholder="Enter path to server script",
value="mcp_server.py"
)
with gr.Column(scale=1):
connect_btn = gr.Button("Connect")
status = gr.Textbox(label="Connection Status", interactive=False)
with gr.Tabs() as tabs:
with gr.TabItem("Chat Interface"):
chatbot = gr.Chatbot(
value=[],
height=500,
type="messages",
show_copy_button=True,
avatar_images=("👤", "🤖")
)
with gr.Row(equal_height=True):
msg = gr.Textbox(
label="Your Question",
placeholder="Ask about the available tools or how to process images",
scale=4
)
clear_btn = gr.Button("Clear Chat", scale=1)
with gr.TabItem("Image Processing"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
operation = gr.Radio(
["Remove Background", "Change Format", "Resize Image", "Visualize Image"],
label="Select Operation",
value="Visualize Image"
)
with gr.Group() as format_options:
target_format = gr.Dropdown(
["png", "jpeg", "webp"],
label="Target Format",
value="png",
visible=False
)
with gr.Group() as resize_options:
with gr.Row():
width = gr.Number(label="Width", value=300, visible=False)
height = gr.Number(label="Height", value=300, visible=False)
process_btn = gr.Button("Process Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_message = gr.Textbox(label="Status")
# Connect to server
connect_btn.click(client.connect, inputs=server_path, outputs=status)
# Chat functionality
msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
clear_btn.click(lambda: [], None, chatbot)
# Image processing functionality
def update_options(op):
return {
target_format: op == "Change Format",
width: op == "Resize Image",
height: op == "Resize Image"
}
operation.change(update_options, inputs=operation, outputs=[target_format, width, height])
def process_image_wrapper(image, operation, target_format, width, height):
return loop.run_until_complete(client.process_image(image, operation, target_format, width, height))
process_btn.click(
process_image_wrapper,
inputs=[input_image, operation, target_format, width, height],
outputs=[output_image, output_message]
)
return demo
if __name__ == "__main__":
if not os.getenv("OPENROUTER_API_KEY"):
print("Warning: OPENROUTER_API_KEY not found in environment. Please set it in your .env file.")
interface = gradio_interface()
interface.launch(debug=True)