File size: 10,026 Bytes
707db97 c6c2112 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d 707db97 674515d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import pandas as pd
import math
from plotly import graph_objects as go
# Load model and tokenizer
model_ids = {
"ERNIE-4.5-PT": "baidu/ERNIE-4.5-0.3B-PT",
"ERNIE-4.5-Base-PT": "baidu/ERNIE-4.5-0.3B-Base-PT"
}
tokenizers = {
name: AutoTokenizer.from_pretrained(path)
for name, path in model_ids.items()
}
models = {
name: AutoModelForCausalLM.from_pretrained(path).eval()
for name, path in model_ids.items()
}
# Helper function to format probability
def format_prob(prob):
"""Format probability as percentage with 1 decimal place"""
return f"{prob*100:.1f}%"
# Helper function to format log probability
def format_log_prob(log_prob):
"""Format log probability with color coding"""
return f"{log_prob:.3f}"
# Main function: compute token-wise log probabilities and top-k predictions
@torch.no_grad()
def compare_models(text, top_k=5):
if not text.strip():
return None, "β οΈ Please enter some text to analyze"
results = {}
for model_name in model_ids:
tokenizer = tokenizers[model_name]
model = models[model_name]
# Tokenize input
inputs = tokenizer(text, return_tensors="pt")
input_ids = inputs["input_ids"]
# Get model output logits
outputs = model(**inputs)
shift_logits = outputs.logits[:, :-1, :] # Align prediction with target
shift_labels = input_ids[:, 1:] # Shift labels to match predictions
# Compute log probabilities
log_probs = F.log_softmax(shift_logits, dim=-1)
token_log_probs = log_probs.gather(2, shift_labels.unsqueeze(-1)).squeeze(-1)
total_log_prob = token_log_probs.sum().item()
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])[1:] # Skip BOS token
# Generate top-k predictions for each position (up to first 20 tokens)
topk_list = []
confidence_list = []
for i in range(min(20, shift_logits.shape[1])):
topk = torch.topk(log_probs[0, i], k=top_k)
topk_ids = topk.indices.tolist()
topk_scores = topk.values.tolist()
topk_tokens = tokenizer.convert_ids_to_tokens(topk_ids)
topk_probs = [math.exp(s) for s in topk_scores]
# Format top-k predictions with probabilities
topk_formatted = [f"{tok} ({format_prob(p)})" for tok, p in zip(topk_tokens, topk_probs)]
topk_list.append(", ".join(topk_formatted))
# Calculate confidence (probability of actual token)
actual_token_prob = math.exp(token_log_probs[0, i].item())
confidence_list.append(actual_token_prob)
# Prepare dataframe for display
df = pd.DataFrame({
"Token": tokens[:20],
"LogProb": [format_log_prob(float(x)) for x in token_log_probs[0][:20]],
"Confidence": [format_prob(x) for x in confidence_list[:20]],
f"Top-{top_k} Predictions": topk_list
})
results[model_name] = {
"df": df,
"total_log_prob": total_log_prob,
"tokens": tokens[:20],
"confidences": confidence_list[:20]
}
# Create comparison dataframe
comparison_df = pd.DataFrame({
"Token": results["ERNIE-4.5-PT"]["df"]["Token"],
"ERNIE-4.5-PT": {
"LogProb": results["ERNIE-4.5-PT"]["df"]["LogProb"],
"Confidence": results["ERNIE-4.5-PT"]["df"]["Confidence"],
"Top-k": results["ERNIE-4.5-PT"]["df"][f"Top-{top_k} Predictions"]
},
"ERNIE-4.5-Base-PT": {
"LogProb": results["ERNIE-4.5-Base-PT"]["df"]["LogProb"],
"Confidence": results["ERNIE-4.5-Base-PT"]["df"]["Confidence"],
"Top-k": results["ERNIE-4.5-Base-PT"]["df"][f"Top-{top_k} Predictions"]
}
})
# Create visualization
fig = go.Figure()
# Add confidence bars for both models
fig.add_trace(go.Bar(
name='ERNIE-4.5-PT',
x=results["ERNIE-4.5-PT"]["tokens"],
y=results["ERNIE-4.5-PT"]["confidences"],
marker_color='royalblue'
))
fig.add_trace(go.Bar(
name='ERNIE-4.5-Base-PT',
x=results["ERNIE-4.5-Base-PT"]["tokens"],
y=results["ERNIE-4.5-Base-PT"]["confidences"],
marker_color='lightseagreen'
))
fig.update_layout(
title='Model Confidence Comparison',
xaxis_title='Token',
yaxis_title='Confidence (Probability)',
barmode='group',
yaxis=dict(tickformat='.0%', range=[0, 1]),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
# Create summary
pt_logprob = results['ERNIE-4.5-PT']['total_log_prob']
base_logprob = results['ERNIE-4.5-Base-PT']['total_log_prob']
# Determine which model has higher confidence
if pt_logprob > base_logprob:
better_model = "ERNIE-4.5-PT"
difference = pt_logprob - base_logprob
else:
better_model = "ERNIE-4.5-Base-PT"
difference = base_logprob - pt_logprob
summary = (
f"π **Model Comparison Summary**\n\n"
f"**Total Log Probability**:\n"
f"- ERNIE-4.5-PT: {pt_logprob:.3f}\n"
f"- ERNIE-4.5-Base-PT: {base_logprob:.3f}\n\n"
f"π **Higher Confidence Model**: {better_model}\n"
f"Difference: {difference:.3f} ({'+' if better_model == 'ERNIE-4.5-PT' else '-'}{difference:.3f})\n\n"
f"**What this means**:\n"
f"- Log probability closer to 0 (less negative) indicates higher model confidence\n"
f"- The {better_model} model is more confident in predicting your input text\n"
f"- Confidence per token is shown in the table and chart below"
)
return comparison_df, summary, fig
# Create custom CSS for better styling
css = """
.main-container {
max-width: 1200px;
margin: 0 auto;
}
.dataframe-container {
margin: 20px 0;
}
.confidence-chart {
margin: 20px 0;
height: 400px;
}
.summary-box {
background-color: #f8f9fa;
border-left: 4px solid #4285f4;
padding: 15px;
border-radius: 4px;
margin: 20px 0;
}
.model-header {
font-weight: bold;
color: #1a73e8;
margin-top: 10px;
}
.token-cell {
font-family: monospace;
background-color: #f1f3f4;
padding: 4px 8px;
border-radius: 3px;
}
.confidence-high {
color: #0f9d58;
font-weight: bold;
}
.confidence-medium {
color: #f4b400;
}
.confidence-low {
color: #db4437;
}
"""
# Gradio interface with improved layout
with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
gr.Markdown(
"""
# π ERNIE 4.5 Model Comparison Tool
Compare how different ERNIE models process your text with detailed token-level analysis.
## What this tool shows:
- **Token Log Probability**: How confident the model is in predicting each token (closer to 0 is better)
- **Confidence**: Probability percentage for each token prediction
- **Top-k Predictions**: What other tokens the model considered likely
- **Visual Comparison**: Bar chart showing confidence differences between models
"""
)
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
lines=3,
placeholder="Enter text to analyze (e.g., 'Hello, World!')",
label="Input Text",
value="Hello, World!"
)
with gr.Column(scale=1):
top_k = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Top-k Predictions"
)
with gr.Row():
compare_btn = gr.Button("Compare Models", variant="primary")
with gr.Row():
with gr.Column():
summary_box = gr.Markdown(
elem_classes=["summary-box"],
label="Model Comparison Summary"
)
with gr.Row():
with gr.Column():
comparison_table = gr.Dataframe(
label="Token-Level Analysis",
elem_classes=["dataframe-container"],
interactive=False,
wrap=True
)
with gr.Row():
with gr.Column():
confidence_chart = gr.Plot(
label="Model Confidence Comparison",
elem_classes=["confidence-chart"]
)
# Examples section
gr.Examples(
examples=[
["Hello, World!", 3],
["The quick brown fox jumps over the lazy dog.", 5],
["Artificial intelligence will transform our society.", 3],
["What is the meaning of life?", 4]
],
inputs=[input_text, top_k],
label="Try these examples:"
)
# Footer with explanation
gr.Markdown(
"""
## How to Interpret Results
1. **Log Probability**: Negative values where closer to 0 means higher model confidence
2. **Confidence**: Percentage showing how certain the model was about each token
3. **Top-k Predictions**: Alternative tokens the model considered likely
4. **Visual Chart**: Bar heights represent model confidence for each token
**Model Differences**:
- **ERNIE-4.5-PT**: Instruction-tuned model, better at following complex instructions
- **ERNIE-4.5-Base-PT**: Base model, better at general language patterns
"""
)
# Set up event handler
compare_btn.click(
fn=compare_models,
inputs=[input_text, top_k],
outputs=[comparison_table, summary_box, confidence_chart]
)
if __name__ == "__main__":
demo.launch() |