Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| # Load the model | |
| model = tf.keras.models.load_model("car_damage_model .h5") | |
| # Prediction function | |
| def predict_damage(img): | |
| img = img.resize((224, 224)) | |
| img = np.array(img) / 255.0 | |
| img = np.expand_dims(img, axis=0) | |
| pred = model.predict(img)[0][0] | |
| label = "Whole Car" if pred > 0.5 else "Damaged Car" | |
| return f"{label} ({pred:.4f})" | |
| # Gradio interface | |
| interface = gr.Interface( | |
| fn=predict_damage, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Label(), | |
| title="Car Damage Classifier", | |
| description="Upload a car image and this model will tell if it's damaged or not." | |
| ) | |
| interface.launch() | |