Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| from peft import ( | |
| LoraConfig, | |
| PeftModel, | |
| prepare_model_for_kbit_training, | |
| get_peft_model, | |
| ) | |
| model_name = "google/gemma-2-2b-it" | |
| lora_model_name="Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) | |
| model = PeftModel.from_pretrained(model, lora_model_name) | |
| def generate_response(input_text): | |
| inputs = tokenizer(input_text, return_tensors="pt").to(model.device) | |
| generation_config = { | |
| "max_length": 512, | |
| "temperature": 0.01, | |
| "do_sample": True, | |
| "pad_token_id": tokenizer.pad_token_id, | |
| "eos_token_id": tokenizer.eos_token_id, | |
| } | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| **generation_config | |
| ) | |
| response = tokenizer.decode(outputs[0]) | |
| return response.split("<start_of_turn>model\n")[1].split("<end_of_turn>")[0] | |
| iface = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."), | |
| outputs=gr.Textbox(lines=5, label="Model Çıktısı"), | |
| title="Anlam-Lab" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |