Spaces:
Runtime error
Runtime error
| import re | |
| import string | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from transformers import BertTokenizer, BertModel | |
| from sklearn.linear_model import LogisticRegression | |
| from nltk.stem import SnowballStemmer | |
| from nltk.corpus import stopwords | |
| stop_words = set(stopwords.words('english')) | |
| stemmer = SnowballStemmer('russian') | |
| sw = stopwords.words('russian') | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') | |
| class LSTMClassifier(nn.Module): | |
| def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None: | |
| super().__init__() | |
| self.embedding_dim = embedding_dim | |
| self.hidden_size = hidden_size | |
| self.embedding = embedding | |
| self.lstm = nn.LSTM( | |
| input_size=self.embedding_dim, | |
| hidden_size=self.hidden_size, | |
| batch_first=True | |
| ) | |
| self.clf = nn.Linear(self.hidden_size, 1) | |
| def forward(self, x): | |
| embeddings = self.embedding(x) | |
| _, (h_n, _) = self.lstm(embeddings) | |
| out = self.clf(h_n.squeeze()) | |
| return out | |
| def data_preprocessing(text: str) -> str: | |
| """preprocessing string: lowercase, removing html-tags, punctuation, | |
| stopwords, digits | |
| Args: | |
| text (str): input string for preprocessing | |
| Returns: | |
| str: preprocessed string | |
| """ | |
| text = text.lower() | |
| text = re.sub('<.*?>', '', text) # html tags | |
| text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation | |
| text = ' '.join([word for word in text.split() if word not in stop_words]) | |
| text = [word for word in text.split() if not word.isdigit()] | |
| text = ' '.join(text) | |
| return text | |
| def get_words_by_freq(sorted_words: list, n: int = 10) -> list: | |
| return list(filter(lambda x: x[1] > n, sorted_words)) | |
| def padding(review_int: list, seq_len: int) -> np.array: # type: ignore | |
| """Make left-sided padding for input list of tokens | |
| Args: | |
| review_int (list): input list of tokens | |
| seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros | |
| Returns: | |
| np.array: padded sequences | |
| """ | |
| features = np.zeros((len(review_int), seq_len), dtype = int) | |
| for i, review in enumerate(review_int): | |
| if len(review) <= seq_len: | |
| zeros = list(np.zeros(seq_len - len(review))) | |
| new = zeros + review | |
| else: | |
| new = review[: seq_len] | |
| features[i, :] = np.array(new) | |
| return features | |
| def preprocess_single_string( | |
| input_string: str, | |
| seq_len: int, | |
| vocab_to_int: dict, | |
| ) -> torch.tensor: | |
| """Function for all preprocessing steps on a single string | |
| Args: | |
| input_string (str): input single string for preprocessing | |
| seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros | |
| vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int. | |
| Returns: | |
| list: preprocessed string | |
| """ | |
| preprocessed_string = data_preprocessing(input_string) | |
| result_list = [] | |
| for word in preprocessed_string.split(): | |
| try: | |
| result_list.append(vocab_to_int[word]) | |
| except KeyError as e: | |
| print(f'{e}: not in dictionary!') | |
| result_padded = padding([result_list], seq_len)[0] | |
| return torch.tensor(result_padded) | |
| def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str: | |
| p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0) | |
| model.eval() | |
| pred = model(p_str) | |
| output = pred.sigmoid().round().item() | |
| if output == 0: | |
| return 'Негативный отзыв' | |
| else: | |
| return 'Позитивный отзыв' | |
| def predict_single_string(text: str, | |
| model: BertModel, | |
| loaded_model: LogisticRegression | |
| ) -> str: | |
| with torch.no_grad(): | |
| encoded_input = tokenizer(text, return_tensors='pt') | |
| output = model(**encoded_input) | |
| vector = output[0][:,0,:] | |
| pred0 = loaded_model.predict_proba(vector)[0][0] | |
| pred1 = loaded_model.predict_proba(vector)[0][1] | |
| if pred0 > pred1: | |
| return 'Негативный отзыв' | |
| else: | |
| return 'Позитивный отзыв' | |
| def clean(text): | |
| text = text.lower() | |
| text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел | |
| text = re.sub(r'\d+', ' ', text) # удаляем числа | |
| text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации | |
| text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки | |
| return text | |
| def tokin(text): | |
| text = clean(text) | |
| text = ' '.join([stemmer.stem(word) for word in text.split()]) | |
| text = ' '.join([word for word in text.split() if word not in sw]) | |
| return text | |
| def predict_ml_class(text, loaded_vectorizer, loaded_classifier): | |
| t = tokin(text).split(' ') | |
| new_text_bow = loaded_vectorizer.transform(t) | |
| predicted_label = loaded_classifier.predict(new_text_bow) | |
| if predicted_label == 0: | |
| return 'Негативный отзыв' | |
| else: | |
| return 'Позитивный отзыв' |