File size: 14,498 Bytes
d08081f
f65990c
d08081f
 
f65990c
 
d08081f
f65990c
 
d08081f
 
 
 
 
 
 
f65990c
 
 
d08081f
1a15b05
 
 
 
 
 
 
 
 
d08081f
 
 
 
 
 
 
 
 
1a15b05
 
587afb9
1a15b05
d08081f
 
1a15b05
d08081f
 
 
 
 
 
 
 
 
1a15b05
 
 
d08081f
 
 
1a15b05
e141e7c
1a15b05
e141e7c
1a15b05
 
 
 
 
 
e141e7c
 
1a15b05
e141e7c
 
1a15b05
e141e7c
1a15b05
e141e7c
1a15b05
e141e7c
 
1a15b05
 
 
 
 
 
d08081f
1a15b05
 
 
d08081f
1a15b05
 
 
d08081f
 
 
f65990c
d08081f
 
f65990c
d08081f
 
 
 
 
 
f65990c
d08081f
f65990c
 
d08081f
 
 
1a15b05
 
 
f6f656f
f65990c
d08081f
f6f656f
 
f65990c
 
 
 
 
1a15b05
f65990c
d08081f
 
e141e7c
 
 
 
 
 
 
 
1a15b05
d08081f
1a15b05
 
 
b46da1b
d08081f
 
 
1a15b05
b46da1b
1a15b05
d08081f
f65990c
1a15b05
d08081f
f65990c
d08081f
f65990c
1a15b05
 
d08081f
1a15b05
 
 
 
d08081f
1a15b05
d08081f
b46da1b
f65990c
d08081f
1a15b05
d08081f
 
f65990c
d08081f
1a15b05
 
 
53354e8
 
1a15b05
e141e7c
1a15b05
 
e141e7c
d08081f
 
1a15b05
 
 
d08081f
1a15b05
53354e8
d08081f
1a15b05
 
 
 
 
 
d08081f
1a15b05
 
 
d08081f
1a15b05
 
 
d08081f
 
1a15b05
d08081f
 
1a15b05
 
2f2f8a0
1a15b05
d08081f
 
1a15b05
d08081f
1a15b05
d08081f
1a15b05
 
 
 
e85255d
d08081f
1a15b05
d08081f
 
f65990c
d08081f
1a15b05
d08081f
 
 
f65990c
1a15b05
 
 
d08081f
f65990c
d08081f
1a15b05
 
 
d08081f
f65990c
1a15b05
d08081f
1a15b05
d08081f
1a15b05
d08081f
 
f65990c
 
 
1a15b05
 
d08081f
1a15b05
d08081f
1a15b05
d08081f
f65990c
 
d08081f
 
1a15b05
 
 
d08081f
 
 
1a15b05
d08081f
 
f65990c
 
 
d08081f
1a15b05
d08081f
 
f65990c
 
 
 
 
1a15b05
 
 
f65990c
b46da1b
 
d08081f
 
1a15b05
f65990c
 
1a15b05
b46da1b
f65990c
1a15b05
b46da1b
f65990c
b46da1b
f65990c
 
 
1a15b05
f65990c
 
 
 
 
 
b85911f
 
1a15b05
 
f65990c
1a15b05
 
 
 
 
f65990c
1a15b05
f65990c
 
 
1a15b05
f65990c
 
 
d08081f
1a15b05
f65990c
 
 
1a15b05
 
 
f65990c
 
 
 
 
 
 
e141e7c
f65990c
 
1a15b05
f65990c
1a15b05
f65990c
 
1a15b05
 
 
f65990c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import io
import json
import re
import tempfile
import logging
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres.vectorstores import PGVector
from sqlalchemy import create_engine

# --- GRADIO ---
import gradio as gr

# --------------------------------------------------------------------------- #
#                              CONFIGURATION
# --------------------------------------------------------------------------- #
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
logging.getLogger("tensorflow").setLevel(logging.ERROR)
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

load_dotenv()
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
SHARED_SECRET = os.getenv("SHARED_SECRET")

COLLECTION_NAME = "real_estate_embeddings"
EMBEDDING_MODEL = "hkunlp/instructor-large"

# *** HARD-CODED VOICE ID (as requested) ***
ELEVENLABS_VOICE_ID = "LHJy3mhZWsvhUjy0zUM1"   # <-- your voice

PLANNER_MODEL = "gpt-4o-mini"
ANSWERER_MODEL = "gpt-4o"

TABLE_DESCRIPTIONS = """
- "ongoing_projects_source": Details about projects currently under construction.
- "upcoming_projects_source": Information on future planned projects.
- "completed_projects_source": Facts about projects that are already finished.
- "historical_sales_source": Specific sales records, including price, date, and property ID.
- "past_customers_source": Information about previous customers.
- "feedback_source": Customer feedback and ratings for projects.
"""

# --------------------------------------------------------------------------- #
#                               CLIENTS
# --------------------------------------------------------------------------- #
embeddings = None
vector_store = None
client_openai = OpenAI(api_key=OPENAI_API_KEY)
client_elevenlabs = None

# ---- ElevenLabs init with detailed logging ---------------------------------
try:
    key_preview = (
        f"{ELEVENLABS_API_KEY[:5]}...{ELEVENLABS_API_KEY[-4:]}"
        if ELEVENLABS_API_KEY and len(ELEVENLABS_API_KEY) > 9
        else "None"
    )
    logging.info(f"Initializing ElevenLabs client with key: {key_preview}")

    if not ELEVENLABS_API_KEY:
        raise ValueError("ELEVENLABS_API_KEY is missing or empty.")

    client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
    logging.info(f"ElevenLabs client created – type: {type(client_elevenlabs)}")

    # Verify we can list voices (optional, but proves the key works)
    voices = client_elevenlabs.voices.get_all()
    logging.info(f"Fetched {len(voices.voices)} voices from ElevenLabs.")

except Exception as e:
    logging.error(f"ElevenLabs init failed: {e}", exc_info=True)
    client_elevenlabs = None

# ---- Log SDK version -------------------------------------------------------
try:
    import elevenlabs

    logging.info(f"elevenlabs SDK version: {elevenlabs.__version__}")
except Exception:
    logging.error("Could not import elevenlabs package.")

# --------------------------------------------------------------------------- #
#                               FASTAPI APP
# --------------------------------------------------------------------------- #
@asynccontextmanager
async def lifespan(app: FastAPI):
    global embeddings, vector_store
    logging.info(f"Loading embedding model: {EMBEDDING_MODEL}")
    embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)

    logging.info(f"Connecting to vector store: {COLLECTION_NAME}")
    engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True)
    vector_store = PGVector(
        connection=engine,
        collection_name=COLLECTION_NAME,
        embeddings=embeddings,
    )
    logging.info("Vector store ready.")
    yield
    logging.info("Shutting down.")


app = FastAPI(lifespan=lifespan)

# --------------------------------------------------------------------------- #
#                               PROMPTS
# --------------------------------------------------------------------------- #
QUERY_FORMULATION_PROMPT = """
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
**Available Tables:**
{table_descriptions}
**User's Query:** "{user_query}"
**Task:**
1. Rephrase into a clear, keyword-focused English search query.
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
3. If no status keyword, set filter_table to null.
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
""".strip()

ANSWER_SYSTEM_PROMPT = """
You are an expert AI assistant for a premier real estate developer.
## CORE KNOWLEDGE
- Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata.
- Properties: Luxury apartments, villas, commercial.
- Budget: 45 lakhs to 5 crores.
## RULES
1. Match user language (Hinglish β†’ Hinglish, English β†’ English).
2. Use CONTEXT if available, else use core knowledge.
3. Only answer real estate questions.
""".strip()

# --------------------------------------------------------------------------- #
#                         AUDIO & LLM HELPERS
# --------------------------------------------------------------------------- #
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
    for attempt in range(3):
        try:
            audio_file = io.BytesIO(audio_bytes)
            filename = os.path.basename(audio_path)

            logging.info(f"Transcribing {filename} ({len(audio_bytes)} bytes)")
            transcript = client_openai.audio.transcriptions.create(
                model="whisper-1",
                file=(filename, audio_file),
            )
            text = transcript.text.strip()

            # Hinglish transliteration
            if re.search(r"[\u0900-\u097F]", text):
                resp = client_openai.chat.completions.create(
                    model="gpt-4o-mini",
                    messages=[
                        {"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}
                    ],
                    temperature=0.0,
                )
                text = resp.choices[0].message.content.strip()

            logging.info(f"Transcribed: {text}")
            return text
        except Exception as e:
            logging.error(f"Transcription error (attempt {attempt + 1}): {e}", exc_info=True)
            if attempt == 2:
                return ""
    return ""


def generate_elevenlabs_sync(text: str) -> bytes:
    """
    Uses the hard-coded voice ID and the correct SDK method.
    NOTE: `model` parameter is REMOVED in SDK v2.17.0+
    """
    if client_elevenlabs is None:
        logging.error("ElevenLabs client not initialized – skipping TTS.")
        return b""

    for attempt in range(3):
        try:
            logging.info("Calling ElevenLabs text_to_speech.convert...")
            stream = client_elevenlabs.text_to_speech.convert(
                voice_id=ELEVENLABS_VOICE_ID,
                text=text,
                output_format="mp3_44100_128",
                # model="eleven_multilingual_v2"  ← REMOVED
            )
            audio_bytes = b""
            for chunk in stream:
                if chunk:
                    audio_bytes += chunk
            logging.info(f"TTS returned {len(audio_bytes)} bytes.")
            return audio_bytes
        except Exception as e:
            logging.error(
                f"ElevenLabs TTS error (attempt {attempt + 1}): {e}", exc_info=True
            )
            if attempt == 2:
                return b""
    return b""


async def formulate_search_plan(user_query: str) -> dict:
    logging.info(f"Formulating search plan for: {user_query}")
    for attempt in range(3):
        try:
            formatted = QUERY_FORMULATION_PROMPT.format(
                table_descriptions=TABLE_DESCRIPTIONS, user_query=user_query
            )
            resp = await run_in_threadpool(
                client_openai.chat.completions.create,
                model=PLANNER_MODEL,
                messages=[{"role": "user", "content": formatted}],
                response_format={"type": "json_object"},
                temperature=0.0,
            )
            raw = resp.choices[0].message.content
            logging.info(f"Planner raw response: {raw}")
            plan = json.loads(raw)
            logging.info(f"Parsed plan: {plan}")
            return plan
        except Exception as e:
            logging.error(f"Planner error (attempt {attempt + 1}): {e}", exc_info=True)
            if attempt == 2:
                return {"search_query": user_query, "filter_table": None}
    return {"search_query": user_query, "filter_table": None}


async def get_agent_response(user_text: str) -> str:
    for attempt in range(3):
        try:
            plan = await formulate_search_plan(user_text)
            search_q = plan.get("search_query", user_text)
            filter_tbl = plan.get("filter_table")
            search_filter = {"source_table": filter_tbl} if filter_tbl else {}

            docs = await run_in_threadpool(
                vector_store.similarity_search,
                search_q,
                k=3,
                filter=search_filter,
            )
            if not docs:
                docs = await run_in_threadpool(vector_store.similarity_search, search_q, k=3)

            context = "\n\n".join(d.page_content for d in docs)

            resp = await run_in_threadpool(
                client_openai.chat.completions.create,
                model=ANSWERER_MODEL,
                messages=[
                    {"role": "system", "content": ANSWER_SYSTEM_PROMPT},
                    {"role": "system", "content": f"CONTEXT:\n{context}"},
                    {"role": "user", "content": f"Question: {user_text}"},
                ],
            )
            return resp.choices[0].message.content.strip()
        except Exception as e:
            logging.error(f"RAG error (attempt {attempt + 1}): {e}", exc_info=True)
            if attempt == 2:
                return "Sorry, I couldn't respond. Please try again."
    return "Sorry, I couldn't respond."


# --------------------------------------------------------------------------- #
#                               AUTH ENDPOINT
# --------------------------------------------------------------------------- #
class TextQuery(BaseModel):
    query: str


async def verify_token(x_auth_token: str = Header(...)):
    if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
        logging.warning("Auth failed for /test-text-query")
        raise HTTPException(status_code=401, detail="Invalid token")
    logging.info("Auth passed")


@app.post("/test-text-query", dependencies=[Depends(verify_token)])
async def test_text_query_endpoint(query: TextQuery):
    logging.info(f"Text query: {query.query}")
    response = await get_agent_response(query.query)
    return {"response": response}


# --------------------------------------------------------------------------- #
#                               GRADIO PIPELINE
# --------------------------------------------------------------------------- #
async def process_audio(audio_path):
    if not audio_path or not os.path.exists(audio_path):
        return None, "No valid audio file received."

    try:
        # ---- 1. READ RAW BYTES ------------------------------------------------
        with open(audio_path, "rb") as f:
            audio_bytes = f.read()
        if not audio_bytes:
            return None, "Empty audio file."

        # ---- 2. TRANSCRIBE ----------------------------------------------------
        user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
        if not user_text:
            return None, "Couldn't understand audio. Try again."

        logging.info(f"User: {user_text}")

        # ---- 3. GET AI RESPONSE -----------------------------------------------
        agent_response = await get_agent_response(user_text)
        if not agent_response:
            return None, "No response generated."

        logging.info(f"AI: {agent_response[:100]}...")

        logging.info(f"FULL AI Response sent to ElevenLabs: >>>{agent_response}<<<")

        # ---- 4. TEXT-TO-SPEECH ------------------------------------------------
        ai_audio_bytes = await run_in_threadpool(generate_elevenlabs_sync, agent_response)
        if not ai_audio_bytes:
            logging.error("TTS failed – returning text only.")
            return (
                None,
                f"**You:** {user_text}\n\n**AI:** {agent_response}\n\n_(Audio generation failed)_",
            )

        # Save to a temporary file for Gradio
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            f.write(ai_audio_bytes)
            out_path = f.name
            logging.info(f"Saved TTS audio to {out_path}")

        return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"

    except Exception as e:
        logging.error(f"Audio processing error: {e}", exc_info=True)
        return None, f"Error: {str(e)}"


# --------------------------------------------------------------------------- #
#                               GRADIO UI
# --------------------------------------------------------------------------- #
with gr.Blocks(title="Real Estate AI") as demo:
    gr.Markdown("# Real Estate Voice Assistant")
    gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")

    with gr.Row():
        inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak")
        out_audio = gr.Audio(label="AI Response", type="filepath")

    out_text = gr.Textbox(label="Conversation", lines=8)

    inp.change(process_audio, inputs=inp, outputs=[out_audio, out_text])

    # No examples – they caused FileNotFound errors when clicking text.


# --------------------------------------------------------------------------- #
#                               MOUNT GRADIO
# --------------------------------------------------------------------------- #
app = gr.mount_gradio_app(app, demo, path="/")